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Introduction
* Electromagnetic(EM) imaging:
measured EM fields — the value distribution of EM parameters
e permittivity(41 B & £5), permeability(f-53), conductivity(E 5 %)
* Biomedicine: microwave imaging
detect anomalies in the permittivity distribution caused
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FIGURE 1. The EM-imaging setup. EM imaging converts measured data to the spatial distribution of electric parameters in the Dol.



* EM field propagates according to Maxwell’s equations, which describe how
electric and magnetic fields are generated by charges, currents, and changes
of the fields.

* In the frequency domain, EM propagation can be described by the following

PDE:
VXVXE()-— a)z,ué(r)E(r) = iouJ(r)

E: vector electric field
| - > measurement
r: spatial position

. permeability

e: complex permittivity, o is conductivity € = €r+10/@®. ——— recover
J: electric current source

w: angular frequency

V x: curl operator



Formulations of EM imaging

* EM imaging: an inverse problem that calculates electric parameters of the
domain of investigation(Dol) from measured EM fields.

* |t can be described as minimizing the “misfit” between the observed and
simulated data:

L(€) =|duws— F() [ + A¢.(€)

where d,ps 1S the field observed by receivers, € is complex permittivity, F(€)
represents the EM-modeling function, @, is the regularization term, and A is
a regularization factor.

* Equation is usually minimized by iterative gradient descent methods.



Challenges of EM imaging

* Each iteration requires computing the forward problem and its Fréchet
derivative, which make this problem computationally intensive.

* The objective function Is nhonconvex.

* Gradient descent methods lack flexibility in exploiting the prior knowledge
that Is not described by simple regularization.
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FIGURE 2. The three ways of incorporating physics into the ML model. (a) Learning after physics pro-
cessing: the physics model is employed to initialize the input of ML models. (b) Learning with physics
loss: physics knowledge is incorporated into the loss functions. (c) Learning with physics models:
physics knowledge is used to guide design of the ML architecture.



Learning after physics processing

* Two steps:

* A roughly estimated image is recovered using classical qualitative or quantitative
methods.

* The rudimentary image Is polished using a DNN trained with the ground truth as labels.
(Image processing)

* In DNN, the more the input Is processed by physics, the better the
generalizability will be.



Learning with physics loss

* Incorporating Forward Modeling in Loss: A Mathematical Example

If the forward process has analytical solutions m := F(p) = p?, the inversion

has two branches of solutions p = +v/m
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FIGURE 51. Incorporating forward modeling into training to reduce nonuniqueness of the inverse problem [19]. (a) When training is supervised by
p (++/m), the predictions are zeros and (b) when training is supervised by labels p°, the correct branch can be predicted by controlling the

signs of solutions.



Training with a rigorous measurement loss

* Consider the inverse problem solved by a DNN with the measured data d as
the input and the permittivity € as the output.

* Let 7 and dy denote the labeled permittivity and EM data, respectively.
* Purely data-driven imaging use permittivity loss for training:
Le=|e—er|
* The physics-embedded one further incorporates the measurement |0ss:
L=oLc+BLa=a|e—er| +B|Fle)—dr|f



Training with a learned measurement loss

* Surrogate the numerical forward solver F(-) with a DNN Og(+)

* The training contains two stages: 1) training the forward solver 2) training
the inverse operator )
OF = arg néi_n Or(er) —dr|,

©; = argmin| ©5(0;(dr)) — dr |

O

* Both stages take the measurement misfit as the loss function, which involves
physical rules.



Training with a PDE-constrained loss

* The PDE-constrained loss inserts PDEs into the loss function.
* Physics-informed neural network (PINN)

Consider the 1D time-domain electromagnetic wave equation

IE(x,1)
ox’ HE

d’E(x,1) _

where E is the electric field, € is permittivity, 4 is permea-
bility, and ¢ and x are the time and spatial coordinate,
respectively. Together with some boundary conditions, the
equation can be analytically or numerically solved to yield E
(forward problem) or € (inverse problem) given ¢ and x.

Take the inverse problem with one-source multiple receiv-
ers as an example. A physics-informed neural network
(PINN) specifies two separate deep neural networks
(DNN's), namely, ©- and ©.. The input of ©: is x and 1
and its output is the electric field E, denoted by
E=0;(x,1). Similarly, the input of ©, is x and its output
is permittivity €, denoted by €=©,(x). The two separate
DNN's are simultaneously-{rained with a shared loss func-
tion L, which includes a-supervised measurement loss of
E regarding initial and boundary conditions

Lu= Nim Z,:(E(xi, t:) = Er(xat:)) e

and an unsupervised loss of partial differential equation
constructed according to (S2)

| o azE(xj’tj) .

NPDEZ( axz

J=1

azE(xi’ ti)

LPDE = #é (xJ)T

) (4

given by L=0luuLsuw+ OeLeoe. Here (x,t) and (x;t;)
are sampled at the initial/boundary position and in the
domain of investigation (Dol), respectively. In addition, E: is
the labeled measurement, Nu. is the number of labeled sam-
ples, Neo: is the number of unlabeled samples in the Dol,
and a. are weights. The partial differentiations are achieved
by the automatic differentiation in the deep learning frame-
work. After training, one can use ©; to predict permittivity at
arbitrary location x. Therefore, the PINN is mesh free.



Learning with physics models

* Unrolling measurement-to-image mapping(inverse)
* Unrolling image-to-measurement mapping(forward)
* Simultaneously unrolling both mappings



Unrolling measurement-to-image mapping(inverse)

* We demonstrate the unrolling of linear inverse problems through radar
Imaging. Here, the electric parameters of interest are intensities of
scatterers in the Dol, denoted by €.  F(e) = ®e

Conventional radar imaging can be formulated as a compressed sensing
problem:
mine | dobs — Pe >+ A | €]

lterative Shrinkage Thresholding Algorithm(ISTA):

€ = s%(%qﬂdobs +(I- %@H@)ek_l)

Learned ISTA(LISTA): learn A/L,(1/L)®" and (I — (1/L)®" ®)

Embedding physics models into the neural networks reduces the number of
variables while maintaining fast convergence rate.



* Embedding physics models into the neural networks reduces the number of
variables while maintaining fast convergence rate.

* The mutual inhibition matrix I — (1/L)®"”® has a Toeplitz or a doubly
block Toeplitz structure due to the nature of radar-forward models.
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* The objective function of nonlinear EM imaging
| dobs — F(e) ||2, where F'(€) 1s numerically solved from PDEs
* Gauss—Newton method:
€1 = €+ (S”S) 'S (dovs — F(€x))
where S Is the Fréchet derivative of F at €.

* By unrolling, a set of descent directions Ks can be learned, which is called
the supervised descent method(SDM)

€r+1 = €L+ Kk(dobs — F(G/\))

* [n training, the EM response Is taken as the input, while the corresponding
ground truth of complex permittivity is the label.

* The SDM shows high generalizability in EM imaging.
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FIGURE 4. Imaging with the SDM for geophysics [55], microwave [21] and biomedical data [61]. The SDM is able to reconstruct complex inhomoge-
neous media while the training scenarios are simple. CT: computerized tomography.




Unrolling iImage-to-measurement mapping(forward)

* Unrolling the integral operation
The integral form of the wave equation is

E(r) = E™(r) + aﬂﬂfvﬁo(r, ) e() — €o]E (1) dr’

where E™ is the incident field generated by the source, Gy is the Green'’s

function describing wave propagation, €q Is the permittivity of the background,
and V is the Dol.

* Physics-embedded DNN (PE-Net)

The forward modeling F(¢€) involving integral operations is unrolled as a
physics-embedded network Of.

After the networks are trained, they are combined with generic networks
0, that perform inverse mappings.



* Solving the integral form is simplified as calculating x (representing the unknown
E) from A(e)x=b

* Conjugate Gradient Method

compute the conjugate direction p and update the solution in an iterative manner
* Update-learning Method

iterations in conjugate gradient approach are unrolled by N neural network blocks

Conjugate gradient method. Update-learning method.

1: Input x, 1: Input x,

2: r,=b—Ax,,p.=r, 2: rr=b—Ax,, p:=r,

3: a,=(rir)/pi (Ap)) 3: X=X

4: x1=xo+0(1p. 4: for k=1,2,...,N,

5: for k=1,2,... untl || = € 5: r.=b—Ax,

6: Iy = T —O(k(Apk) 6: P11 = @f,(pk, I, Ii-1)

/: ﬂk+1 =(l'{l'k)/(l’l—1l'k—1) 7 Xi+1 =xk+@§x(pk+1, Apm, I:)
8: pk+|=l'k+ﬁk+lpk

9: Olit1 = (I‘{l‘k)/pZﬂ (Apm)

10: Xi+1 = X+ Qs Prst




—— ©, ->I O Lal e = ez”‘
€1= €0+ O] (dops — Op(€n)) €= €1 + OF (dyps — Op(€q)) .

FIGURE 5. Physics-embedded DNNs for microwave imaging [22], where the forward modeling is
unrolled into a neural network. The parameters of the forward solver ©, are fixed when training the
inverse networks ©;s.

K
€K = @1(60, dobs) = €0+ Z @lf(dobs — @F(Gk-l))

k=1



* Unrolling the differential operation
Unroll the time-domain wave equation with recurrent neural networks (RNNSs)

dE. JH, JH,
A
) jOH: __9E:
ot ady ’
0H, O,
Kot = Tox

where E and H are the electric and magnetic fields, respectively, that are
coupled with each other; the subscripts represent spatial components of the
vector fleld. After discretization, for instance,
H_’\'-Hn(i,j+%)—H_’f-_“2(i,j+%) )
a At N
_ENi, j+ 1) —ELG, j)
Ay

Hy™" = H™" + Or(EY)
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FIGURE 6. The cell architecture of an RNN for simulating wave propagation [20]. At each time step,
the RNN outputs the E-field E. and H-fields H., H, in the entire Dol, which are computed from
their values in the previous time step, according to Maxwell’s equations. The partial derivatives are
approximated with finite differences. Taking the permittivity as a trainable layer, training this network
and updating its weights is equivalent to gradient-based EM imaging.




Simultaneously unrolling both mappings

* They first reconstruct permittivity from a linear process by approximating the
electric field E in the integration of (9) to the incident field E*™™¢,

* Intermediate parameters, e.g., total field and contrast source, can be
estimated with this permittivity.

* A more accurate permittivity model i1s computed from the intermediate
parameters and measurements.
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FIGURE 7. Simultaneously unrolling forward and inverse processes into neural networks [16]. The for-
ward process (in green) computes the contrast source J and total field E’ given permittivity, while
the inverse process (in blue) infers permittivity from measurements J and E'.



Comparisons

ke  Contrast source network(CS-Net):

14 = gradient-based optimization, whose initial guess
1.2 Is provided by a DNN

L * Back Projection Scheme (BPS):

Ground Truth

learning after physics processing

* Supervised descent method(SDM):
unroll the inverse mapping

* Physics-embedded DNN (PE-Net):
unroll the forward mapping

* Physical model-inspired neural network
(PM-Net):

unroll both mappings




Challenges and opportunities

* Data
Obtain the exact electric properties of targets.
* Physics

Incorporate physics theory into data-driven methods. The Dol is partitioned
Into triangle (2D) or tetrahedral (3D) elements.

* Algorithm
The credibility of predictions needs to be improved.
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