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Introduction

gMRI(quantitative MRI): quantitative measurements of tissue in physical units

* Acquire contrast-weighted images

* Obtain quantitative parameter

Traditional Qualitative MR| | Quantitative MRI

Example of electrical conductivity mapping




Physics and reconstruction of gMRI
* MR physics and physical models

The bulk magnetization M = M. i+ M,j+ M.k
When put in a static main magnetic field Bo, Bloch equation:

dM(7) M:(0)i+M,(v)j] (M.(7)—Mok

=M(7) X yB(7) -

dt 1> T,

Y . gyromagnetic ratio
Moy : equilibrium magnetization
B(7) : spatially and time-varying total magnetic field

T1, T2 : longitudinal and transverse relaxation time



Physics and reconstruction of gMRI
* MR physics and physical models

Bloch simulations describe the relationships between magnetization and
biophysical parameters:

P = A(xa ti)
X : biophysical parameter

Pt magnetization signal measured with the sequence parameter ¢

An MR sequence can be manipulated to “weight” the magnetization by
changing a certain sequence parameter ¢ to estimate the parameter x.




Physics and reconstruction of gMRI

Table 1. The commonly used physical models and their dependencies on MRI sequences.

Varying Sequence
Parameter Model Sequence Parameter (; |
Relaxation T, .= 1Io-sin(,)- 1 —.lE l_cfsl(t!-) Gradient echo  Flip angle
Ei=en
Relaxation 7> p.=1-e* Spin echo Echo time
Relaxation T3 p.=1I-eT Gradient echo  Echo time
Diffusion fensor D p,, = I, e Spin echo/ Diffusion gradient

gradient echo  direction

Susceptibility ¥  p,=D(0,)x Gradient echo  Orientation




Physics and reconstruction of gMRI
* MR imaging model

To form an MR image, the magnetization of the imaging region should be
spatially encoded during data acquisition.

b, (K)
E'r,-(k)
pn(r)
c'(r)

bi(k)= [ c'(r) pu(r)-e ™" dr + e, (k) 0=1,..., L

: measured k-space data from the [ th receiver coil

. associated measurement noise

. Image intensity that reflects magnetization distribution in the field of view
. L th coil sensitivity

k €[—0.5,0.5) and r € R?, denote the k-space and image domain coordinates

b..=FC'p,+ &, b = Ep:+ &,



Physics and reconstruction of gMRI

* Reconstruction

Approaches of gMRI: (1) MR image reconstruction; (2) parameter fitting
* Nonlinear inverse problems:

biophysical parameters(unknowns), contrast-weighted images(observations)

i 1y 2, 1 2
X = argmlnjz ” A(X, f;) — P ||2 — E” A(X': f) — Pr ||F

XECNXNP f= ]

X: vectorized biophysical parameter map
Np: the number of biophysical parameters
L: the total number of images; A(x,7)=[A(x,71),A(X,12),...,A(X,7L)], p:=[p1, p1ss.... P1.]



Physics and reconstruction of gMRI

* Reconstruction

* Heteroscedasticity of this noise process: weighted-least-squares
* Special applications with ill-posed models: % = argmin %”A(X,t)—pr I+ R(x)

Xeb

* Fast gMRI, which undersamples the k-space:

X = argmin%” EA(x,7)—B; ||i~ + R(x; pr)
x € CV*Nr

B, =[b.. bu....bu] . acquired k-space data of all contrast-weighted images
E: the forward imaging operator



Categories of physics-driven DL-based fast
gMRI methods

Table 2. A summary of the strategies of DL-based fast qMRI methods.

Category Advantages Limitations Applications

Type 1 Easily implemented and low The diversity of generated fraining T,

Training sample generation via cost data from real testing data may infro- 7, and 7>-MRF

physical models duce uncertain errors. Magnetization transfer contrast (MTC)-MRF
Type 2 More stable estimation from Synthesized images may be different ~ MT

Predicting missing/optimized con-  fewer contrast images from ideal images, and error willbe  Diffusion tensor imaging

frastweighted images via physical propagated fo quantitative maps. CEST

models and networks

Type 3 Adds an additional loss term, It is difficult to choose weighis fordif T,

Loss function design using synthetic  even allowing unsupervised ferent loss terms. MTC-MRF

k—spuce data/images generuted |E-:::rning
from physicul modgeh

Type 4 EJ(P“C“I}" incorporates physiccll Theoretical convergence is not guar- QSM
Network design using physics pri- models into a network and typi- anteed. T,
ors as a data consistency |c1yer cu||y requires less fraining data
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Training sample generation using physical
models

* (Generating training samples using Bloch simulation with a predefined
parameter range.

Contrast Images |—> Network |—> Parameter Maps

Training Data

Predefined: Simulated: |
Tissue Parameters =i Physical Model I-—> Signal Curve/ :
Sequence Parameters Contrast Images '

FIGURE 1. The type 1 category in Table 2. A deep network is trained for the parameter fitting of qMRI
with training samples generated using a physical model.



Physical model-based synthetic images via DL

* predict missing Images by using a network for replenishment
* remove disturbances by using a network for correction and improving overall
Image quality

Physical Model

Contrast Images Images With Full Contrast
With Fewer Number | Number or Improved Quality

___________________________________________________________________

Conventional Fitting
or Network Fitting

Parameter Maps |<

FIGURE Z. The type 2 category in Table 2. Physical models are implicitly involved when using the
network to generate missing and improved images.
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Physical model-based synthetic images via DL
gMTNet

* gMT(quantitative magnetic transfer):
acquire images with multiple off-resonance frequencies for parameter fitting,
typically 12 off-resonance images are acquired.

* gMTNet:
produce 2D gMT parameter maps from 4 off-resonance images by generating

MISSINg IMmages.
‘ ‘ e . qMTNet—acq‘mm m - AMTNetfit
- -@ .

Four Off-Resonance Eight Off-Resonance Images gMT Parameters
Images

FIGURE 3. The gMTNet. Two subnetworks are involved. qMTNet-acq produces the missing eight off-
resonance images from the four acquired images. qMTNet-fit obtains gqMT parameters from a total of
12 images. 13



Physical model-integrated loss function design

| n?;g"e"saa) —»  Network o| Parametet r:ﬂ?dpg (%)
l 1,
L, =|p, - pll>. <+— Synthetic Images (p,) |« Physical Model
______________________________ S ,
Contrast | Parameter Maps (%) L= Aji:l +~;{12.£2
vl e Network » £, = Ik - J L =lx—x H;
I ! Lr=|pi—pilror|B.—B.[;
Uﬁgifgﬁﬂjd Physical Model L

| !

Lo =B, - LY i Synthetic k-Space (B,) [+—— Synthetic Images (p,)
(b)

FIGURE 4. The physical model-integrated loss function design with synthetic data in the (a) image

domain and (b) k- space domain. The network is used to generate parameter maps x from input con-

trastimages p.. The conventional loss is the error between x and the labels. The synthetic images

p. and k-space B, can be generated from % according to the physical model and image operator

E. The error between the synthetic data and labeled data is used as an additional loss term. 14



Physical model-integrated loss function design

. Varying Sequence
2 l I Ia p p I n g Parameter Model Sequence Parameter ( #:)
: Spin echo Echo time

Relaxation T p.=1y-e™

* MANTIS (model-augmented NN with incoherent k-space sampling):
Directly estimate T2 maps from undersampled k-space data, using a CNN with

the loss function £ =210, T2)— (o, T2) [l + 22| B. — B. [}

Ip and T. : the proton density and T2 maps to be reconstructed
B: = EA((Io, T2), TE) : the synthetic k-space data from the forward physical model
TE : the echo times of T2 mapping

 RELAX (reference-free latent map extraction):

L= " B, —B, ”i + AR(L}, Tz)
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Physical model consistency network design

* With DL, iterations can be unrolled into a deep network to learn
regularization and data fidelity terms.

X, X5 Xpi
- »  Network; Network, [=b sss =——pl Neotworkp b

I DC ‘ DC ‘ DC
Physical Model

FIGURE 5. The unrolling-based network design for gMRI. Each iteration in traditional iterative reconstruction is unrolled as a network module. The physi-
cal model is incorporated as a part of the measurement operator that transfers parameter maps into the raw data space to enforce DC.
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Physical model consistency network design

| r T l . Varying Sequence
1 a p p I n g Parameter Model Sequence Parameter ( ;)
Relaxation 7, p.=1I,-sin(t,)- 1 _1 —E, Gradient echo  Flip angle

E cos(t:)

_IR
Elzg Ti

 DOPAMINE: A deep model-based MR parameter mapping network
R(X) =X~ Dr(X) [}
where Dr (X):CY*' — CY*! denotes a CNN denoiser.
~ | 2 2
X = argmin | A(X) = B: |- + 2| X - Dr(X)
X1 = Xi— 206 [ T2 (Xie)(A(Xk) — Br) + A (Xi — Dr (X))
= (1 — 2aeti) Xk — 241k Dr (Xi) — 2 IR (Xi ) (A (Xk) — BY)
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Physical model consistency network design
T1 mapping

i X
e C:'n';l p%?nsged 1, |Iteration 1 » lteration k »| Iteration P
/( {
Multicoil
Undersampled
1-22,1)
k-Space ( il ®
+ X
X, 241, _ e k+1
‘ [ Network Dy ]4@%—»@-—'
23 (X)(AX;) -B) ——

FIGURE 8. The overall architecture of DOPAMINE. The initial X, is generated by the mapping network from zero-filling 7, -weighted images. The network
Dy serves as a CNN-based denoiser, and the physical model is incorporated into the operation of J% in the DC layer.
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