Imaging With Equivariant
Deep Learning

From unrolled network design to fully unsupervised learning
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2. Group actions and equivariance
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The erfelic group Cr acts on \
Group action bhe Set of the. thre Verticos
‘b%mgk rotations . !
The concept of a group 1s particularly interesting when combined with the concept of an action: given

a (potentially abstract) group GG and a set X, we will say that GG acts on X through T'if T = {7, : X —

X}seq is a collection of invertible transformations that is compatible with the group, in the sense that

j 0 A Tg comv be Seon w4 v opordttor ]Corm a]@ q.

* A particularly simple group action is the trivial action of G on X, In
which the case the group “acts” by doing nothing: 7, =idx forall g€ G,
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In this work, we are concerned with images, in which case the signals of interest can usually be
modeled as functions« = X =3 ¥. As an example, for color images X is a subset of R? and Y is
R?. A group action 7' of G on the domain X can be lifted to an action 7"’ on the set of signals by

T (u)(x) =u(Ty=i(x)). If the set of signals is a vector space (as for the color images), 7" acts linearly

on the signals, making it a so-called representation of (. Similarly, an action 7" of G on the range Y of

the signals can be lifted to an action on the signals, 7", by T (u)(z) = T;(u(z)), and in fact actions on

the domain and range can be combined if so desired.
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FIGURE 2. An illustration of group actions on images. Groups can act on images by transforming either their range or their domain. (a) Reference image.
(b) Transformation of range: e.g., color inversion. (c¢) Transformation of domain: e.g., translation, rotation, scaling, and shearing.



In the setting of‘computational imaging, we are concerned with maps ® : X — ) between potentially
different sets A and ) representing spaces of images and/or measurements. For example, @ could be
the forward operator or a reconstruction operator. If both A and ) share a symmetry in the form of
potentially different group actions 7 of G on A" and 7’ of G on ), we may ask whether ® respects
these symmetries, in the following sense:

Equivariance: we call ® equivariant, if @(7(u)) =T} (®(u)) holds for all u € X and g € G.

Invariance: if 77 is the trivial action of G on ) and ® is equivariant, we will call ® invariant. In this

case, we have @(7(w)) =®(u) for all u € X and g € G. )
f/ .
v vey, ¢‘[T cv)) 79 m&m/)) ) rar/uce/ v Wi, @(“) omol @(72[‘4)) = Elgmy
4\[ 7_3 ézm), 7—9 ((/\@((A)) <= 4’(@(7310«1) f/)?)[u)
An additional fact that will be of importance later is that equivariance is pre nder function
composition: if G is a group that acts on spaces X', YV, Z through T, 7", T" respectively and ® : X — )

and ¥ : Y — Z are equivariant, ¥ o ® : X — Z is equivariant in the sense that (¥ o ®)(7,(u)) =

Ty (Lo ®)(w).  Hrenntvity



3. Computational imaging, equivariance,
and deep learning

* Computational imaging, distinct from other forms of image
processing, relies on the acquisition of sensor measurements that

Indirectly inform about the imaged object.
* Inverse problem: Jorward WlW'S'WW) proces)

y = A(u) + €.

* whereye M uye " J
measurement ma4e representation



Model-based image reconstruction(MBIR)

argmin E(u) + J(u).

is composed of ‘@ data consistency loss term E(u) = d(A(w),y) to capture the role of the acquisition
physics in the measurement process, including the noise statistics, along with a regularization function
J(w) that incorporates prior knowledge (e.g., sparsity in the wavelet domain) of u and penalizes less

plausible solutions.

* |n the continuous domain, total variation (TV) prior is naturally
Invariant to translations, rotations, and reflections.



( non- obiffmwaw{alo )
* Simple gradient descent methods cannot be directly applied.

* Proximal splitting methods:

For example, a non-differentiable regularization function ./ can be handled through its proximal

mapping which takes the following form: %”W@/ﬂ U, ]Ll\ﬂd Vv %af/ M miZe 6069,
1 ;
prox ;(u) = argmin ;HU — |3+ J(v) (3)

* Basic PGD

algorithm proceeds by taking a step in the negative gradient direction of the smooth component of the
cost function, followed by a proximal mapping to reduce the non-differentiable cost. Its update equation

thus takes the following simple form:
ul® = prox_ (u“"” - TVE(‘!I.(k—l))) (4)

where 7 > () denotes the step size of the algorithm.



Deep learning for inverse problems

In particular, due to the powerful representation learning properties of DNNs, a range of neural network
solutions have recently been proposed for computational imaging (see [18], [19] for detailed surveys). In
this setting, the goal is usually to‘learn a reconstruction function [y : y =+ u parameterized by the network
weights 6, using N pairs of measurements and ground-truth images {(v;, u;) }i=1....~. The networks are

typically trained by minimising the empirical risk

N
mein;“'('U-ufa(yi)) (5)

ﬂ}_g U ;—% ATj —> U )\ncnrrorodc?/ %e, awtw(?(biwu lohy]sias
but PQ&iWiN/ [(}u»@e Ctumﬁﬂ% D‘f ’Mmr\g dato,



Alternatively, we can design the architecture of fy using ideas of MBIR solutions

Consider again the PGD algorithm in (4). A simple modification replaces the proximal map along with

the step size, 7, at the kth iteration with a neural network fék), such that:
uk) = fék)(u(k’_l),VE('u.(k_l))). (6)

The algorithm is then run for a fixed number of iterations, £ =1,..., 1tery,ax, as illustrated in Figure

The learnable weights in individual networks { fék)} can be either tied or varied from iteration to iteration.
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FIGURE 3. A schematic overview of an iteration of an unrolled PGD algorithm applied to the problem of CT reconstruction. In this setting, the inputs «* "
and VE(u"“ ") may be combined as in PGD using a (learnable) step size 7 to give «“ "—TVEw" ") before processing with the NN. It is also
possible, however, to allow the NN to learn a more general mixing of these inputs.

While such hybrid MBIR-DNN approaches have proved highly successful, providing state-of-the-art
imaging solutions, it appears that by adopting these data-driven approaches we may have thrown away
the other prior physical knowledge we have, namely the symmetry properties of our signal set. In the
next two sections, we review ways to remedy this through either a modified unrolled network architecture

or through the training process itself.



4. Equivariance by design

* NNs are alternating compositions of simple linear and nonlinear
functions, so we are led to study the problem of designing linear
and nonlinear equivariant functions.

* For clarity of exposition, this section will treat signals as
continuous objects.

One established approach to designing equivariant networks, which leads into the systematic approach
that we will study in the next section, can be found in CNNs [24]. Treating an image as a function
u : R? — R, we can act on it with a translation h € R? by Tj,u(z) = u(x — h). In this case, convolution

by an arbitrary filter & : R2 5 R, ie u— k*u, is equivariant, where

kxulz) = / k(z)u(z — z') dz’. /4*(7; nix )) — Th ( k‘d(‘;;/{ (X)>

R2



Equivariant neural networks

Lifting approach: It is possible to generalise the Euclidean convolution of Equation (7) to a group
convolution; which combines two signals defined on the group in an equivariant manner. Under a technical
condition (local compactness) that is satisfied for many groups, it is possible to define an invariant measure

jt (the so-called Haar measure) on the group (. Thisdnvariance means that for any integrable u : G — R

and group element g € (&, we have (‘-[ G): {R"d Leb%g/vw
/'Zl(Qh)d/l(h) — /u(h)du(h). (8)

G G
* With this measure, we can define equivariant convolutions on the

9roup by Thg) = UCh'y)
(

k*u(g)= / k(hyu(h™ g)du(h). 9)

o

() & “R” % the grouy OJ[ JOrr>vv'§\ovl>wv\/'7



Note that this convolution acts on signals that have as domain . This is where the lifting name comes
into play: an input signal such as an image generally has as domain a space such as R<, i.e. it is not of

the form required to apply the Equation (9). To prepare such an ordinary input signal, we need to “lift”

o
it to (G, for instance using a linear map such as ,%Q —> &
Lu(g) = [ k(g™ z)u(z)da, (10)
Rd

where k£ : R? — R is again a filter with learnable parameters. This approach was pioneered in [10],

X The obompuin OJY Oin Iwg@ [ROI
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* Steerable filters approach
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FIGURE 4. To properly transform geometric features, such as the vector field shown here, it is necessary for the group action on the domain to
be followed by a group action on the range. In this case, we have a vector field, so the representation 7z is simply given by 7.=H. (a) u(x).
(b) u(H '(x— h)). (C) myu(H ' (x— h)).
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* For more complicated geometric features that are not just vector
flelds, this I1s generalised by transtorming the range of the signal
using a representation 1t of the linear transformations being

considered. Correspondingly, the group actions we consider will
all be of the form

T, myu(z) = rau(H Y(z — h)), (11)

where (h, H) is a group element, consisting of a translation 2 € R? and a linear operator H : R? — R4,

and 7y is a representation of the linear operator H, acting on the range of the signal u : RY — R
We assume that there is such a group action on the input signals and a similarly defined group
action 7™ on the output signals for a potentially different representation 7’ of the linear operators under
consideration. The goal is to design an equivariant convolution mapping input signals wu;, : R¢ — R% to
output signals ey : R — R’ by
kxu(zr)= / k(zu(z — z')dz’

Rd



Writing out the equivariance condition, we find that

i [ K )uH @ = h) =) da! = T, K] ()

Rd V) =
%H ( l(* U ( H-,('X“L’\) ) ) = [TZ;L,H)U] x k(x) (Equivariance)
= /k(:c’)mqu(H"l(:c —h—-2z"))da’
Rd
= /k(H:E,)ﬂ'HU(H—l(.’l? —h)—2')da".
Rd

(Change of variables, using that H is an isometry)
Rearranging, we have
0= /(ﬂ'hk(x') — k(HzYrg)u(H Y (z — h) — ') dz’

Rd
and since this must hold for arbitrary signals u, we find that this is equivalent to asking that the kernel

k: R — Rd~Xdx gatisfies the condition

k(Hz)ry = myk(x) (12)

for all linear operators H : RY — R< that occur in the group G [E]. This constraint (which is linear in k)

can be solved ahead of time, and discretized to give a basis of equivariant convolution kernels.
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FIGURE 3. A reconstruction with provable equivariant NNs: translational versus rototranslational.
Incorporating more inductive bias into the NN improves the PSNR. Even more importantly, the
additional inductive bias leads to a better reconstruction of fine details. (a) Translational equivariance,
(b) rototranslational equivariance, and (c) reference. PSNR: peak signal-to-noise ratio. (Source: [11].)
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Fig. 6: A companson/l?)f DNN denoisers trained to denoise images corrupted by additive Gaussian white

noise, using LeakyReLU as activation function. The denoisers are trained on pairs of clean and noisy

images with a limited range of noise levels (PSNR ~ 26 — 34 dB) and then tested on a wide range of
noise levels. Evidently, the denoiser that does not use biases (which is equivariant to scaling of the range)

is vastly more robust to unseen noise levels than the denoiser that does use biases. The noisy image y in
this example has a PSNR of 9.9 dB, DnCNN(y) has a PSNR of 15.2 dB and DnCNNy;.s—gree(y) has a
PSNR of 21.0 dB.



5. Equivariance by learning

* An alternative way to impose equivariance Is to enforce It through
the training process Instead of using equivariant architectures.

* [n the supervised setting, where ground-truth images are
available, this can be done through DA ( Data /@fvxjmemmﬂm

* while for unsupervised learning, a system-equivariant self-
supervised loss can be used.



Equivariance through DA

* DA Is based on the assumption that there Is often additional
Information within the training data that has so far been unused.

* DA introduce a set of transforms through which one can modify
the existing training data to generate new plausible samples.

DA

Augmented Training Pairs

A




Equivariance in unsupervised learning

* consider a nalve unsupervised loss, which only enforces
measurement consistency, e.g.,

N
> 1A fo(yi) — yilb. (15)
=1

T)“W/ oM Wp’w‘tW/j M’”'"j solutions j;g Yhat, atann, Zero JOMA‘Mnﬂ CAror.



Perhaps surprisingly though, the weak assumption of invariance to actions of compact groups can
be enough for fully unsupervised learning [13]. To understand this, note that such invariance means
an observation y can be equally thought of as an observation of a different signal, , via a virtual

measurement operator A, = AT, such that:
y=Az = AT T, 'z = AZ (16)

where group invariance ensures that z = 7~ 1y = Tg:r is a valid element of our signal model. The group

action here rotates the nullspace of A: M = )( X ’ AX = 01]

. ks _ ot o~
Na, = T] Na /\%g'fﬂdlﬁfg%:ﬁ (17)
potentially exposing parts of the original nullspace to view. In order to see the whole of the signal space

it is therefore necessary that the concatenation of all the virtual measurement operators,

AT,

W?frww‘) st be b“‘()j WV‘%}V M= i (18)

| ATjg |

be full rank. One can also think of M here as being the combined measurement operator associated with

—— )

having oracle simultaneous access to all the virtual measurements of the same signal, x.



|

1) Egquivariant Imaging: If the forward operator is notf equivariant and the group is big enough,

then we can expect to be able to learn from only measurements (an in-depth analysis of the necessary

and sufficient conditions for unsupervised learning can be found in [32]]). The equivariant imaging (EI)

framework |

13

] offers an elegant way of pursuing system equivariance through self-supervised learning,

by using following surrogate loss function:

algmlnz > Afo(wi) — will3 + all fo(ATy fo(yi)) — Ty fo(wi)ll3, (19)

i=1 geGG

* where the first term enforces data consistency , the second term
enforces system equivariance, and a controls the strength of
equivariance loss.



Measurement Consistency Loss

fo(»)

Equivariance Loss

El




FIGURE 8. A comparison of El [13] reconstruction with linear inversion and supervised learning for a 4 x accelerated single-coil MRI. The network
architecture in each case was a U-net taking A'y as the input. By enforcing system equivariance during unsupervised training, El can perform almost as
well as a fully supervised network. PSNR values are shown in the top right corner of the images. Sup: supervised.



REI

4

FIGURE 9. Low-dose CT image reconstruction on the test observations (50-view sinograms) with mixed Poisson—Gaussian noise. A comparison among
linear inversion, El, REI, and a supervised learning solution. PSNR values are shown in the top right corners. (Source: [33].)



6. Open problems and future directions

* Opportunities and limitations of equivariance

* current iImplementations tend to impose only limited symmetry, e.g.,
rotations of multiples of 90 °

* learned equivariance acts only on the training data and may not be as
robust as equivariance by design

* whether we can always expect to achieve system equivariance and/or
whether it is always desirable (6 and 9)

* There are also many unanswered theoretical questions in terms of both
generalization and identifiability.



* General group actions

* An Interesting challenge Is to account for group actions beyond rigid
transformations, such as translations and rotations.

* Beyond Euclidean domains

* The focus of the literature so far has been on scalar-valued imaging.
Extensions to either the domain or range being a manifold or a graph are
challenging and fall within the emerging framework of geometricdeep
learning.



