Boosting Semi-Supervised Learning by Exploiting All Unlabeled Data [CVPR 2023]

FixMatch’s problem: suffer from the waste of complicated examples
Our contributions: Entropy Meaning Loss(EML), Adaptive Negative Learning(ANL), FullMatch

Preliminaries
The original consistency loss in SSL:
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The improved consistency loss function in FixMatch:
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Entropy Meaning Loss (EML)
We propose Entropy Meaning Loss to allocate more samples with pseudo-labels.
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and when it equals to 1, ¢ is selected as a target class.
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Ptc . the confidence of the target class, which will gradually converge to the given label.

For certain challenging examples, the competition between confusion classes and target class
always leads to a failure in generating high-confidence prediction.

we impose an additional constraint on the rest of the categories (i.e., all non-target classes)
to allow them to share the remaining confidence equally to avoid any class competition with

the target class.
The label of the non-target classes:
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Our proposed Entropy Meaning Loss (EML) can be defined as:
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EML can cooperate with /us to further promote the confidence of target class while
constraining the distribution of the non-target classes.

Adaptive Negative Learning (ANL)
It is easy to produce ambiguous predictions on complicated scenarios, these examples are

difficult to be assigned pseudo-label. Thus, we allocate an additional label with less noise to
leverage these examples.

An ideal approach is to exploit an additional dataset to evaluate the top-k performance,
thereby calculating a suitable k value so that the top-k error rate is close to zero. In this work,
we present a scheme to approximately evaluate the top-k performance, referred to as

Adaptive Negative Learning (ANL).
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Q. = argmax (Q, t) is temp labels at step ¢

We assign negative pseudo-labels to categories ranked after top-k on the prediction
distributions of the weakly-augmented version.
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where Rank is a category sorting function based on confidence scores in the descending order.
The adaptive negative learning loss Lanl can be formulated as:
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FullMatch
By integrating the Entropy Meaning Loss (EML) and Adaptive Negative Learning (ANL) into
FixMatch, we propose an advanced SSL algorithm named FullMatch.
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Figure 5. Overview of the proposed FullMatch. First, we allocate the negative pseudo-label (green bar) for all unlabeled data with the
proposed Adaptive Negative Learning. Then, if the highest probability is above the predefined threshold (dotted line), we will assign the
pseudo-label (purple bar) just like FixMatch, but we optimize further remaining non-target classes (blue bar) via the proposed Entropy
Meaning Loss. The black line indicates the existing FixMatch-based methods, and the red line is our proposed method. (Best viewed in
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