ACPL: Anti-curriculum Pseudo-labelling for Semi-supervised Medical Image

Classification [CVPR 2022]

Problem:

Medical image analysis has a number of multi-class (e.g., a lesion image of a single class)
and multi-label (e.g., an image from a patient can contain multiple diseases) problems,
where both problems usually contain severe class imbalances because of the variable
prevalence of diseases.
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(b) Imbalanced distribution on multi-label Chest X-rayl4 [39] (left) and
multi-class ISIC2018 [36] (right)

Methods:
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A large unlabelled training set Dy = {xi}i—{
The pseudo-labelled set Ds

An anchor set Da contains informative pseudo-labelled samples

ACPL Optimisation

Algorithm 1 Anti-curriculum Pseudo-labelling Algorithm

I: require: Labelled set Dy, unlabelled set Dy, and ) {8) High
number of training stages 7'
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Figure 2. Anti-curriculum pseudo-labelling (ACPL) algorithm.
The algorithm is divided into the following iterative steps: 1) train
the model with Ds and Dy ; 2) extract the features from the an-
chor and unlabelled samples; 3) estimate information content of

T

t—t+1

unlabelled samples with CDSI from (4) with anchor set Da; 4)

8 optimise (1) using D, D to obtain py, (x) partition the unlabelled samples into high, medium and low infor-
9:  update labelled and unlabelled sets: mation content using (2); 5) assign a pseudo label to high informa-

Dr + DLUDs, Dy < Du\Ds tion content unlabelled samples with IM from (6); 6) update Dgs
10: end while
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Cross Distribution Sample Informativeness (CDSI)

First, we introduce a new approach to select the most informative unlabelled images (as far
as possible from the distribution of labelled samples) to be pseudo-labelled.

The function that estimates if an unlabelled sample has high information content:
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¢ € 2 = {low, medium, high} represents the information content random variable

7 = max {p(¢ =low|x, D4),p(¢ = medium|x,D )}

Pv(C1%D4) can be decomposed into YIS Pa)py(C[Da) /s (xIDa)

p'y(ClpA) = I
Py (x[C, Da) = n(d(fo(x), Da)lpc, E¢). (3)
The probability in (3) is computed with the density of the unlabelled sample x with respect to

the anchor set, as follows:
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Informative Mixup (IM)

Second, we introduce a new pseudo-labelling mechanism, called informative mixup, which
combines the model classification with a K-nearest neighbor (KNN) classification guided by
sample informativeness to improve prediction accuracy and mitigate confirmation bias.
After selecting informative unlabelled samples with (2), we aim to produce reliable pseudo

labels for them.

Ymodel (X) = po(x),
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y= g(.fﬁ(x)sDA) = d(fe{X),DA) X )_}mode](x)
+ (1 = d(fo(x),Da)) x Frnn(x).
(6)

Anchor Set Purification (ASP)

After estimating the pseudo label for informative unlabelled samples, we aim to update the
anchor set with informative pseudo-labelled samples to maintain density score from (4)
accurate in later training stages. We select the least connected pseudo-labelled samples to

be inserted in the anchor set:
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where the pseudo-labelled samples with @(/e(x),Pv,Da) = Land y = g(fa(x), D) from (6) gre
inserted into the anchor set.

c(fa(x), Dy, Da) of a pseudo-labelled sample fp(x) in (7)
is computed in three steps (see Fig. 3): 1) find the KNN
samples NV (fo(x),Da) from fy(x) to the anchor set D a;
2) for each of the K elements (x4,y4) € N(fo(x),Da).
find the KNN set N(fo(x4),Dy) from fo(xa4) to the
unlabelled set Dyr; and 3) ¢( fo(x), Dy, D4) is calculated
to be the number of times that the pseudo-labelled sample
x appears in the KNN sets N(fgp(xa),Dy) for the K
elements of set N'(fg(x),Da). The threshold « in (7) is
computed with o« = minyep, ¢(fo(x), Dy, Da).
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Figure 3. ASP: 1) find KNN samples from an informative unla-
belled sample to the anchor set D4; 2) find KNN samples from
each anchor sample of (1) to the unlabelled set D;r; and 3) calcu-
late the number of surviving nearest neighbours. Samples with the
smallest values of ¢(.) are selected to be inserted into D4.



