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Robust retrieval of material chemical states in X-ray
microspectroscopy

Ting Wang, Xiaotong Wu, Jizhou Li, Chao Wang

Abstract—X-ray microspectroscopic techniques are essential
for studying morphological and chemical changes in materials,
providing high-resolution structural and spectroscopic informa-
tion. However, its practical data analysis for reliably retrieving
the chemical states remains a major obstacle to accelerating
the fundamental understanding of materials in many research
fields. In this work, we propose a novel data formulation model
for X-ray microspectroscopy and develop a dedicated unmixing
framework to solve this problem, which is robust to noise and
spectral variability. Moreover, this framework is not limited
to the analysis of two-state material chemistry, making it an
effective alternative to conventional and widely-used methods.
In addition, an alternative directional multiplier method with
provable convergence is applied to obtain the solution efficiently.
Our framework can accurately identify and characterize chem-
ical states in complex and heterogeneous samples, even under
challenging conditions such as low signal-to-noise ratios and
overlapping spectral features. Extensive experimental results on
simulated and real datasets demonstrate its effectiveness and
reliability.

Index Terms—X-ray microspectroscopy; image unmixing; total
variation; Plug-and-Play prior.

I. INTRODUCTION

-RAY absorption spectroscopy (XAS) is a scientific
X technique that utilizes X-rays to investigate the electronic
and structural properties of materials. However, the spatial
resolution of XAS is typically limited to the micron or sub-
micron scale, which poses a challenge when studying materials
with complex or heterogeneous structures. In recent years,
spectroscopic full-field transmission X-ray microscopy (TXM)
has emerged as a novel tool for nanoscale chemical imaging,
with great potential in various multidisciplinary fields [1} 2].
By imaging at energy points across the absorption edge of the
element of interest, TXM offers both high spatial resolution
and chemical-specific information. Sub-50-nm resolution X-
ray absorption near-edge structure (XANES) spectroscopy is
routinely achieved with TXM-XANES, mainly operating in
the hard X-ray regime (5 to 12 keV) [3H5]]. Its application areas
include materials science, physics, chemistry, and biology.
For instance, it can be used for chemical mapping in battery
studies [6, [7] and mesoscale degradation [§]].
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In TXM-XANES, the intensity change of each pixel is scru-
tinized to generate XANES spectra that are matched against
reference compounds. Some common techniques, including
the edge-50 or linear combination fitting (LCF) [1]], are used to
fit the spectra, then a two-dimensional colormap is constructed
to display the chemical phase combination of each pixel.
The XANES edge-50 point (energy at 0.5 spectrum position),
which measures the absorption spectra of materials within
the energy range of 5 keV to 12 keV, is a specific type of
XANES spectrometer. The utilization of the edge-50 XANES
technique has been progressively examined for characteriz-
ing the chemical composition and structure of environmental
material [9]. On the other hand, [10] proposed using LCF
to determine the phase composition of a chemical sample
from normalized XANES spectra. The XANES image at each
pixel represents a spectrum at a particular location, which can
be fitted with reference spectra to produce spatially resolved
chemical state information. This technique significantly sim-
plifies the processing and analysis of XANES spectra using
LCF. These traditional methods have been extensively used in
the literature [11H13]].

Although traditional methods are widely applicable, these
rely on the high quality of XANES imaging. In this case,
a relatively slow acquisition process, with the recording of
hundreds or thousands of energy points, is needed to achieve
sufficient energy resolution. Fast TXM-XANES imaging is
crucial for reliably solving morphological chemical phase
transitions, as in 3D battery material research. To increase the
speed of TXM-XANES imaging, energy points are reduced,
or X-ray exposure time is minimized, which is more favorable
for radiation-sensitive samples, similar to low-dose medical X-
ray imaging applications. However, excessively short exposure
times can result in measurements with strong noise [14].
Furthermore, during the process of acquiring XANES data,
there are many variations in the X-ray exposure conditions,
and inherent material properties, which contribute to the
variability of XANES spectra [[15]. In the face of strong noise
and spectral variability, the edge-50 and LCT methods fail to
obtain a reasonable interpretation of elemental and chemical
information. Despite efforts to optimize microscope hardware,
the physical limitations of the TXM imaging system remain
difficult to overcome. To address this obstacle, computational
algorithm development is inevitable for improving downstream
analysis through fitting results.

Spectral unmixing methods [[16] have numerous applications
in image science, including remote sensing [17H19], optical
microscopy [20], and X-ray imaging [21423]. The unmixing
technique aims to decompose a spectrum of mixed pixels into



a set of distinct spectral signatures, known as endmembers,
along with their corresponding fractional abundances [24,[25].
By utilizing spectral unmixing in X-ray microspectroscopy,
the chemical states of materials can be directly obtained
bypassing the fitting process. Various regularizations have been
developed in spectral unmixing methods to utilize the prior
information on the abundance map against noise. In addition,
in the face of spectral variability, many model formulations
have been proposed in the unmixing problems [26H30]]. The
principle underlying the LCF method is essentially spectral
unmixing [16], whereby the mixture is analyzed by deter-
mining the contribution of the reference spectra. However, it
is sensitive to noise and limited in handling problems with
spectral variability.

The XANES unmixing task involving spectral variability
can be formulated as an optimization model with some proper
priors. We employ two regularization techniques to achieve
this: the total-variation (TV) regularizer and the Plug-and-Play
(PnP) prior. The TV regularizer is applied to the reconstructed
image to incorporate spatial and spectral information through
pixel connections in the unmixing process [31} 32]. On the
other hand, the PnP technique utilizes state-of-the-art denoisers
to tackle linear inverse problems in various hyperspectral
image processing tasks [33H37]. The main contributions of
this paper are summarized as follows:

e« We present a novel and robust framework for X-ray
XANES imaging, which incorporates various realistic
factors that affect the spectra, such as noise and spectral
variability.

o The convergence of our proposed framework with TV
regularization is theoretically analyzed, demonstrating its
effectiveness and applicability.

e Our proposed framework is evaluated extensively using
both quantitative and qualitative methods on synthetic and
real datasets. The results indicate that our proposed meth-
ods surpass the state-of-the-art. Especially our framework
with a PnP prior achieves the best performance.

The rest of the paper is organized as follows. Section
briefly describes two related works. In Section we propose
a novel data formulation model for the material chemical states
retrieval in X-ray microspectroscopy and the corresponding
algorithms to solve it. The convergence analysis is shown in
Section Section [V] presents the experimental results and
some subsequent discussions. Finally, Section provides a
summary and future perspectives.

II. RELATED WORK

This section will present a concise overview of two con-
ventional methods to address this problem. Furthermore, the
form of the edge-50 and LCF serves as the baseline for our
proposed approach.

A. Edge-50

The edge-50 point, representing the energy at the 0.5 spec-
trum position, is a crucial parameter in studying chemical state
changes during battery cycling. It is often used to determine
the phase map in a TXM-XANES system [38} 39].

After preprocessing and the post-edge and pre-edge region
normalization [1]] of XANES images, a XANES spectrum is
constructed for each pixel by plotting normalized absorption
versus energy. We can then obtain the ratio of chemical
materials for each pixel by comparing the energies at the 0.5
spectrum position from the referenced spectra.

B. Linear combination fitting (LCF)

Besides the edge-50, LCF is another technique used to ex-
tract information about the electronic structure of elements in
a complex sample from XANES spectra [10]. By using a least-
squares approach, this technique decomposes the spectrum
into a linear combination of reference spectra from known
compounds. In fact, LCF is the classical linear mixing model
(LMM) in the hyperspectral imaging unmixing field [16} 26].

Here the observed XANES image is represented by Y =
[y1,¥2,---,yn] € RT*N_ where each column vector is
obtained by lexicographically ordering the TXM image with
size N = M x K, and T is the number of energy points. The
LCF model generates the noisy measurements Y from the
chemical phase map X = [x1,Xa,...,X,] € REXN pixel-
wisely.

Yk:AXk+rkak:15"'7N7 (])

where A € RT*L is the dictionary, representing the reference
materials spectra in the XANES images, L is the number of
materials, and rj is assumed to follow Gaussian distribution.
In other words, @]) can be rewritten in a matrix form:

Y = AX +R, )

by considering all the pixels. Since the weight of a linear
combination or chemical phase map is non-negative and sum-
to-one, the estimation of the chemical phase map can be
obtained by solving the following optimization problem:

1
min f||Y—AX||%
X 2 3)
st. X>0, 17X =1.

The chemical phase map X in a model (3) can be obtained
using a non-negative constrained least squares algorithm, such
as [40].

Although traditional methods can quickly determine the
composition of unknown samples, these methods are not
robust under strong noise settings.

III. PROPOSED ROBUST UNMIXING FRAMEWORK

This section presents two models for effectively unmixing
XANES images from model-based and learning-based per-
spectives, respectively. Both of them are solved by ADMM-
based algorithm.

A. Model formulation

The spectral variability induced by the various conditions
can be effectively modeled by approximating the dictionary
matrix of each pixel with the scaled version of the reference
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Framework of the proposed model for material chemical states retrieval in the form of unmixing for X-ray microscpectroscopy. The normalized

XANES spectra from each pixel are unmixing to create a chemical phase map X, which also takes into account the scaling factor on the image.

spectra. We propose an extended LCF model by considering
the variability in each pixel, i.e., (I)) can be changed to

yk:SkAXk‘f'rk,k:].,...,N, 4

where sy, is a scalar in the k-the pixel. Similar to (), we get
the matrix form of () as

Y = AXdiag(s) + R, (5)

where diag(s) represents a diagonal matrix with its diagonal
values s = [s1, 89,...5y]|7 and 5; > 0,Vie€1,...,N. Fig.
gives the macro diagram of spectral unmixing for the XANES
imaging. With (3), we get an optimization problem:

1
min =Y — AXdiag(s)||*
min 5 | g(s)17 ©

st. X>0,s>0, 17X =1.

Note that (3) is equivalent to (6) if we skip the sum-to-one
constraint. However, combining X and s into a nonnegative
least squares problem would lose some prior information on
X itself, especially when X and s are independent. In the
following, we will utilize the prior information and propose
a robust optimization framework under a low exposure time
measurement.

B. Model-based approach: TV regularization

TV regularization is a widely-used technique in image
processing to promote sparsity in the gradient of the im-
age [41} 142]]. Here the chemical phase map can be regarded as
a group of images and have a piece-wise spatial correlation.
Hence, we first adapt TV regularization into (6) and the
proposed model can be expressed as follows:

L
.1 .
min 5 Y —AXdiag(s)||%+A Z | Vx;]1+1a, (X)+1a,(s),

j=1

(7
where A is the regularization parameter, x; is the j-th row in
the chemical map X, and the L; norm for vectors is denoted

by || - ||1. We define a discrete gradient operator,
— |Va N
Vz = {VJ z,VzecR",

where V., V, are the finite forward difference operator with
a periodic boundary condition in the horizontal and vertical
directions, respectively. Here I is the indicator function for
the nonnegative value, i.e.,

x € (,

0
I = 8
a(x) {+oo otherwise. ®

In addition, ; = {X|X > 0and 17X = 1} and Q, =
{s|s > 0}. After splitting the variables, the problem in (7)
with auxiliary variables can be expressed as follows:

L
1
win 5 [Y — AMI|7 +AZI a1 + T, (W) + o, (t)
j=
s.t. M = Xdiag(s), W =X, t =s,
u; =Vx;,, forj=1,...,L.
)

Denote U = [uj,uy,...,ur], the corresponding augmented

Lagrangian is:
L1(X,8, M, U, W, t F)

L
1
=5IY - AM]|[7 + A gl + Ia, (W) + Lo, (t)

j=1
e P
+ 2|/ Xdiag(s) - M+ CJ} — Z]|C3

L
O T(19xs — g+ dE — [1513)

j=1
p p
+ §||X -~ W+E|} - §||E||fv
P p
+Sls—t+glF — Sllsllz,
2 2
(10

where C, D = [dy,ds,...,d;], E, g are dual variables and
A, p are positive parameters. Denote F = [C; D; E; diag(g)].



We apply ADMM as the following scheme,

XM = arg min Ly(X,s*, M¥, UF, W tF FF),
skt — argmin £, (XL s, M*, UX, WF tk FF),
MFEHL = argl\flnin L1 (XFHL 1 M, UR, WF tF FF),

UL — argmin £, (XL P MEFL U, W tF FF),
U

CchHH = ck + X diag(s" ) — MM,

d;?‘*‘l = d§ + Vx;”l k+1 forj=1,...,L,
Ek+1 — Ek + Xk—‘rl _ Wk+1,

gk+1 — gk + SkJrl _ tk+1

Fk+1 _ [Ck+1; Dk+1; Ek+1; dlag(gk+1)]

)
We then elaborate on how to solve the six subproblems in (TIJ),
by taking the derivative of £, with respect to X, we obtain a
closed-form solution,

Xk =((M* — C*)(diag( vT ;
+ Wk —EF))(diag(s ) -A+D)7!
where A = —V7T'V represents the Laplacian operator. To solve

for (I2), we use the conjugate gradient (CG) descent iterations.
The s-subproblem in (I1)) has a closed-form solution.

slc+1 _ ((Xk+1)TXk+1+I)_1((Xk+1>T(Mk—Ck)+tk—gk>.

13)
The M-subproblem in (11) also has a closed-form solution,
ie.,

Mk-‘rl — (ATA+pI)—l(ATY+pxk+1diag(sk+1) +pck)
(14)
To obtain the U-subproblem, we take the derivative of £, with
respect to u;.
A
ul ! = shrink(Vxi*! 4 d¥, ;),forj =1,...

, L, (15)

where shrink(z, \) sign(z) max(|z] — A, 0). Here we
impose the sum-to-one constraint by normalizing X in each
iteration, then the subproblem of W and t are only for the
non-negativity-constrained projection operator. Algorithm [I]

summarizes the whole process for solving model (I0).

C. Learning-based approach: PnP Priors

Designing a powerful regularizer can be challenging, as
complex regularizers often complicate optimization problems,
making the entire process more difficult. Rather than using a
handcrafted regularizer, we aim to leverage prior knowledge
about the spectral characteristics of materials in the scene
to achieve better regularized unmixing results. Our proposed
method can be seamlessly integrated into existing optimiza-
tion frameworks, making it a practical and efficient tool for

WHH — argmin £, (XFFL s MAHL UM W tF FF),
A%%

thtl = arg} min £;(XFFL, sk MFHE UL WhHL ¢ FF),

Algorithm 1 The Framework for XANES Image Unmixing
with TV Regularization and PnP Priors.

Input: A XANES image Y, Dictionary A.

Output: Phase map X, Scaling factor s.

1: Initialize: X and s and choose parameter p and A.
2: while not converged or iterations are not reached do

is updated by (I2) for TV ,

is updated by for PnP,

Normalize X such that 17X =1,

s « (XTX+D)I{(XT(M-C)+t—g),

M <« (ATA + pI) Y (ATY + pXdiag(s) + pC),
shrink(Vx; +d;, 3), for TV
Denoiser(x; + d;, %), for PnP

W + max(X + E, 0),

t + max(s+g,0),

C «+ C + Xdiag(s)

dj + VXj —

dj +x;—u

12 E+E+X-W,

133 g +—g+s—t.

14: end while

X

10: - M,

u;, for TV

for PnP

1:  dj <

7

XANES image unmixing. The optimization problem can be
formulated as follows:

I)Iéln f||Y AXdiag(s HF—I—)\Zq) (x5)+1Io, (X)+Io,(s),

j=1

(16)
where ®(X) represents some regularization term enforcing
prior knowledge of X.

By introducing the auxiliary variables, the optimization
problem of can be written in the equivalent form:

L
win 5[Y - AMI: 40 Y 0(w) + o, (W) + Fos (1)
J

st. M = Xdiag(s),u; =x;, W =Xt =s.

a7)
and the augmented Lagrangian is as follows:

L5(X,s,M, U, W,t,F)

L
1
= LY - AMIE Y o)
=1
+ gHXdiag(s) —M + C||% —

L
p
+35 D Ik —uy +df7 -
j=1

+ 21X~ W +E|J} -

p
Lllc)3:

2

) (18)
2 lds 1%

p
eI

p
+2lls — b+ gl -

p
2l

where C, D, E, g are dual variables and A, p are positive
parameters. The method for solving model (I8) is similar to



that of model (I0). Specifically, by taking the derivative of
Lo with respect to X, the X-subproblem has a closed-form
solution.

L
— CF)diag(s"®) + Z j
j=1

— E¥)(diag(s*)? + 21) !

Xk+1 :(( (19)

+ WF

The u;-subporblem is to solve a proximal proximal operator
as follows:

uk+1 k+1

y —argm1n7||u X; dk||F+)\¢( ),  (20)
which can be viewed as an image-denoising problem. The
goal is to eliminate additive Gaussian noise with a standard
deviation of o = \/\/p. We employ established and effective
denoising operators in the PnP framework iterations, such
as the conventional BM3D [43] or DnCNN [44]], which
utilizes deep learning. After acquiring the necessary denoising
operators, we update the primal and dual variables in the

ADMM process, following Algorithm

Remark 1. Dictionary selection: The proposed algorithm can
quickly and accurately extract the spectral signal from the
XANES imaging data. However, the reference spectra are a
critical component for achieving optimal performance. When
the reference spectra are unknown, we use the conventional
spectra extraction method, which is the vertex component anal-
ysis (VCA) [45] as a baseline for dictionary identification. In
the real data analysis in Section we demonstrate that
using VCA with denoising results in more accurate reference
spectra extraction, particularly in strong-noise environments.

IV. CONVERGENCE ANALYSIS

In this section, we demonstrate the convergence of Algo-
rithm [T with TV regularization. Under some assumptions, we
prove an optimal solution to the problem (I0) can be found by
iterating the scheme (T1)). Although this result is not entirely
satisfactory, it provides some theoretical guarantees for the
reliability of Algorithm [I] with TV regularization.

Assuming X* = {X*,s*, M*, U* W* t* C* D* E* g*}
as the fixed point, then the Karush-Kuhn-Tucker (KKT)
condition of (9) can be summarized as follows:

= M* — X*diag(s*),
= uj—-Vxj, forj=1,....L,
0= W*_—X*
0= t*—s",
0= Crdiag(s")+ Y./, V7d} +E*, o
= X*TC* 4 pdiag(g"),
= AT(Y - AM*) — pC*,
0 Ad|ujfls—pdj, forj=1,...,L,
(B, W-W* <0 VWeQ,,
(g%, t—t")<0 Vte.

Theorem 1. Let X* be generated by Algorithm |1} if the suc-
cessive differences of the multipliers C*+t1 — CF, D1 _DF,
EF! — EF and gh*t' — gk all converges to 0 as k tends to
oo, and if {Sk} is bounded, then there exists a subsequence

XFki whose accumulation point satisfies the KKT condition of
©).
Proof. Since limy,_, oo CF*t! — C* = 0 and limj,_,, D**! —

DF = 0, and the multiplier updates are given by (TT), it can
be conclude that

lim X*diag(s®) — M"* =0,
hmVx —u =0, forj=1,...,L.
k—o0

Here W* is bounded owing to the constraint €2;. Incorpo-
rating limy_,. E*Ff! — E¥ = 0, we get the boundedness
of X*. Hence there exists a bounded subsequence such that
lim; o0 EFi = lim; o XF*i = X*. It can be inferred that
both Mk,Uk, and t are bounded from the same analysis.
Therefore, the following system of equations holds:

X*diag(s*) = M*,

Vxr=u}, forj=1,...,L,

Wi (23)
tr=s" ’

The optimality condition associated with X-subproblem can
be written as:

L
(X*diag(s*) — M* + C*)diag(s*) + Y _ V7 (Vx} —u}
j=1
+dj) + (X* —W* +E*) =0.
(24)
Using (23), we have:
L
C*diag(s*) + »_V'd; + E* =0. (25)
Jj=1

Similarly, by the optimality conditions associated with s and
M-subproblems, we obtain

X*TC* + pdiag(g*) =0,
AT(Y — AM*) — pC* =0.
The proof of the final relationship on the stationary condition
in (2I) can be found in [46], the specific proof of the

relationship is omitted here. Lastly, from optimality condition
in the W-subproblem in we get

<_Ek’ W — Wk+1> > _<Wk’+1 — Xk W — Wk+1>
> —[WEH X[ W - WEH Y W oe @
<7gk t _ tk+1> > 7<tk+1 _ Sk+1 t _ tk+1>

> —|thtt — —tFH,V g € Q.

(26)

s 1t

Thus, we have
(EX*, W -W*) <0 VWZ>0,
(g",t—t") <0 Vg=>0.
O

Remark 2. Note that (7)) is a non-convex optimization problem
with respect to both X and s, and our algorithm (II)) is a
four-block ADMM. The corresponding convergence analysis
is very challenging. We refer to some existing work [46-48]]
and establish the convergence under the assumption of the
successive differences of the multipliers, which is empirically
verified in Section [V}



V. EXPERIMENTS AND RESULTS

In this section, we will evaluate the performance of the
proposed methods quantitatively and visually on both synthetic
and actual datasets. Regarding the comparison with different
priors, our methods were divided into two groups: the model-
based method (RUMy,) and learning-based methods (RUM,,,
denotes as PnP with DnCNN [44], RUM,,,, denotes as PnP
with BM3D [43])). These proposed methods will be assessed
in comparison to the traditional methods, namely edge-50 and
LCFE

A. Experimental Settings and Evaluation Metrics

Particle Round

Polymer

Fig. 2. Typical examples of the test datasets: projections (top) and recon-
structed slices (bottom).
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Fig. 3. Normalized spectra under different Ni valence states of X-ray XANES
in a battery cathode. State 1, 2, 3, 4, 5 represent the different valence states
of Ni, respectively.

Data Description. The dataset presented in Fig. 2]comprises
three X-ray projection images (Particles, Polymer and Round)
and three reconstructed slices (Wedge, Electrode and Brine),
which were utilized to create a simulation of 2D and 3D TXM-
XANES imaging scenarios. To generate simulated movie data,
as shown in Fig. [3] the reference spectra of different Ni
valence states were randomly assigned to pixels in the images
for various phase maps. The sample is assumed to contain
various valence states of Ni elements, and the proportion of Ni
elements satisfies the sum-to-one constraint. We use number
(1,2,3,...,L) to describe the state.

Evaluation Metrics. Each synthetic dataset frame is further
corrupted with additive Gaussian noise with varying noise lev-
els, with the standard deviation o € [1, 7]. For the performance
assessment of the algorithms, we utilize two commonly used
criteria to measure the accuracy of the phase map: the peak
signal-to-noise ratio (PSNR) and the structural similarity index
(SSIM). PSNR is defined as follows:

PSNR = 20 x log;;, (MAX/RMSE), 7
where MAX is the maximum pixel value of the estimated
image X, and RMSE is the root mean square error between
X and the ground truth X. The RMSE is defined as:

ni na
1

20D ) — 2 ),

i=1 j=1

(28)

where ni and ny are the number of rows and columns in the
image X. We use the estimated phase map X and the ground
truth X to calculate PSNR.

SSIM is a metric that quantifies the similarity between two
images. The SSIM formula is expressed as follows:

[(2ugpx + c1) * (20xx + ¢2)]
(13 + 1k +c1) * (0% + 0% +c2)]

SSIM(X, X) = ., (29)

where pg and px represent the means of X and X, respec-
tively. o¢ and ox denote the standard deviations of X and
X, respectively. o is the covariance of X and X, while ¢;
and co are small constants added to prevent division by zero
errors and stabilize the formula.

Parameter Settings. The maximum iteration of the RUM
algorithm is set as 100 for all scenarios. To achieve the best
RMSE results for simulated data, A and p are fine-tuned for
various methods. Fig. [ illustrates the effect of parameters
p and A on the performance of RUM1v using Particle data
with ¢ = 3. We observe that A regulates the influence of
the regularization term and significantly affects the unmixing
results, whereas p is a penalty parameter in the augmented
Lagrangian function and only affects the convergence speed.

%1073
5 -

RMSE

1000

Fig. 4. The study analyzed the relationship between RMSE and regularization
parameters using Particle data (o0 = 3) and evaluated the performance of the
RUMyy method.
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Fig. 5. The RE and RMSE curves of our proposed methods were analyzed
using the Particle (left) data and the Brine data (right) under the noise level
o=3.

B. Analysis of the proposed algorithm

Convergence. In Section we have proved the conver-
gence analysis on Algorithm [I] with the TV regularization
under some assumptions. Here we conduct experiments to
empirically verify the assumption and demonstrate the con-
vergence outcomes of three proposed methods with both TV
and PnP priors. For each iteration, we plot the relative errors
(RE) defined as ||C**+! — CF||% + | D*+1 — DF||2 + |EF ! —
E*||2 + g —g¥||% to verify the assumption in Theorem|]
In addition, we also plot the RMSE in (28) with respect to
the iteration. Fig. [5] shows that the value of RE goes to zero
during the iteration, which is consistent with the assumption
in Theorem [l Three methods achieve stable RMSE values
after 100 outer iterations on both datasets. Hence we set the
maximum iteration number as 100 in the following experiment
to reduce the computation time.

TABLE 1
Comparison of the computational time (units: seconds). Particle and Brine
data have the image size of 379 x 520 X 969 and 761 x 742 X 969,

respectively.
Edge-50 LCF RUMrty RUMpnp, RUMpnp,
Particle 2.40 4.11 9.78 13.51 210.54
Brine 10.97 31.40 42.20 46.72 333.59

Running Time. In order to find a balance between per-
formance improvement and computational efficiency, we con-
ducted experiments to evaluate the running times of various
datasets on the CPU. It is worth noting that all of these
experiments were conducted on a computer equipped with an
Intel i7-6348 2.6 GHz CPU and 16 GB of RAM. Table [I
shows the average computation time for the Particle and Brine
datasets. The edge-50 method requires the least amount of time
because it does not require any iterative computation. RUM,y
is much smaller than the other priors. In particular, when the

data size is larger, the running time of RUM with DnCNN is
much smaller than BM3D. Our observations indicate that the
running time of the proposed framework depends mainly on
the complexity of the different priors.

Selection of the PnP prior. The proposed PnP framework
offers great flexibility, allowing us to incorporate various state-
of-the-art image-denoising approaches. This study examines
two notable denoisers: DnCNN [44] and BM3D [43]. The
results in Table [[] demonstrate that both methods significantly
enhance the PSNRs and SSIMs across different datasets.
However, when observing Fig. [6l it becomes evident that
RUM with BM3D achieves superior outcomes. Therefore,
we employ BM3D as our chosen denoising approach for the
following experiments, referred to as RUMj,;.

TABLE II
Comparison of PSNR (dB) and SSIM for two datasets using different PnP
priors (o = 3).

Particle Brine
PSNR SSIM PSNR  SSIM
PnPy 33.20 0.84 34.51 0.78
PnPs 37.36 0.96 39.85 0.94
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Fig. 6. A visual comparison of the chemical phase map for the different PnP
priors on the Particle data (top) and the Brine data (bottom) when o = 3.

C. Results of synthetic datasets

Different Noise Levels. Table |lII| displays the performance
of both traditional methods and our proposed unmixing meth-
ods incorporating TV and PnP priors with two reference spec-
tra. The optimal results are highlighted in bold font. Overall,
our two methods all outperform the traditional techniques for
all the datasets. They exhibit remarkable robustness to a wide
range of noise levels, particularly when the noise is substantial,
as the chemical map is still reconstructed effectively. RUM,,
performs best under all noise conditions. In Fig.[7} we compare
the chemical phase maps of Round data obtained from various
approaches under two kinds of noise levels. Except for edge-
50, we observe that the estimated phase maps are consistent
with the ground truth. However, under strong noise, our
proposed methods yield less noisy phase maps closer to the



Edge-50 LCF RUM RUM

s
1
0.8
0.6
0.4
0.2
0

s

Fig. 7. A visual comparison of the chemical phase map for various methods on the Round data under different noise levels (¢ = 3 on the top and 0 = 7
on the bottom). Note that the other chemical map is the reverse since L = 2.
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TABLE III
Comparison of PSNR (dB) and SSIM for simulated datasets using different approaches and noise levels.
Edge-50 LCF RUMry RUMpyp
Test set
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
1 8.98 0.10 16.11 0.57 38.22 0.94 42.65 0.98
Particle 3 5.96 0.08 9.33 0.28 32.64 0.87 37.36 0.96
5 5.73 0.07 6.80 0.22 29.59 0.76 34.39 0.93
7 5.71 0.07 5.26 0.20 27.63 0.69 31.39 0.87
1 9.19 0.23 17.37 0.51 42.39 0.95 46.79 0.99
Electrode 3 6.23 0.22 10.00 0.36 38.38 0.92 42.27 0.98
5 6.01 0.22 7.29 0.35 33.65 0.83 37.97 0.95
7 5.97 0.21 6.03 0.36 31.51 0.78 35.21 0.92
1 11.20 0.23 19.94 0.59 42.36 0.95 47.10 0.99
Polymer 3 6.56 0.22 11.86 0.39 37.85 0.89 42.74 0.98
5 6.07 0.21 8.94 0.35 32.44 0.75 38.53 0.94
7 5.97 0.21 7.27 0.35 30.00 0.68 34.29 0.86
1 10.04 0.23 19.23 0.56 47.26 0.99 51.01 1.00
Wedge 3 6.58 0.21 10.97 0.35 38.98 0.93 43.35 0.99
5 6.23 0.21 8.15 0.34 33.65 0.83 38.14 0.95
7 6.13 0.21 6.88 0.32 31.41 0.76 34.86 0.89
1 7.06 0.04 12.17 0.50 35.28 0.92 39.58 0.97
Round 3 4.89 0.01 6.81 0.28 28.53 0.80 34.14 0.94
5 4.66 0.01 5.06 0.22 26.35 0.70 30.78 0.88
7 4.63 0.01 3.95 0.19 24.43 0.63 28.19 0.80
1 10.46 0.03 19.86 0.52 40.34 0.92 45.40 0.97
Brine 3 4.96 0.01 10.54 0.24 35.59 0.83 39.85 0.94
5 4.59 0.01 7.08 0.18 30.90 0.66 37.01 0.91
7 4.55 0.01 5.17 0.17 28.52 0.56 33.00 0.80
ground truth and preserve the image details. The edge-50 TABLE IV
and LCF methods are pixel-based and do not consider the Comparison of PSNR (dB) and SSIM using different approaches with
. . . . varying numbers of the reference spectra (¢ = 3).
spatial-spectral correlations in XANES images. Our proposed
RUM,, method employs fixed regularizers and lacks flexibility, LCF RUMry RUMp,p
while the PnP framework models priors using denoiser, thus Testset L PSNR SSIM PSNR SSIM PSNR  SSIM

eliminating the need for handcrafted regularizers.

3 1346 052 2256 080 2264 092

e Patticle 4 1336 048 2032 073 2123 085

Number of reference spectra. To evaluate the capability of s 1372 o048 2131 076 1945  0.89
unmixing multiple spectra for XANES data, we generated two 3 1147 027 2455 074 2623 092
_ _ Wedge 4 1066 024 1805 061 1934 075

datasets at reference spectra (L = 3,4,5) when ¢ = 3. Here s 1262 025 1926 066 2013  0.80

different reference spectra represent different valence states of
Ni. The results of PSNRs and SSIMs are presented in Table
demonstrating our proposed framework’s robustness and
superiority. Additionally, Fig. [§] displays the phase maps of



Fig. 8. The visual comparison for the chemical phase maps of the various
methods on Wedge data under three reference spectra (o = 3). From top to
bottom: Ni valence state 1. 2, 3, respectively.

Fig. 9. The visual comparison for the chemical phase maps of the various
methods on Particle data under five reference spectra (¢ = 3). From top to
bottom: Ni valence state 1, 2, 3, 4, 5, respectively.

three reference spectra using Wedge data, indicating that our
phase maps are closer to the ground truth. Furthermore, Fig.
[ shows the result with the number of reference spectra being
5. The phase maps with Particle data for Ni valence state 1, 2,
and 5 obtained RUM method exhibit clearer structural details.
However, the structure of the phase map for Ni valence state 3
and 4 is not very clear, suggesting a strong correlation between
its reference spectra. Nevertheless, RUM,,, still outperforms
other methods in unmixing multiple spectra.

Ref#1
15 Ref#2
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Fig. 10. Low SNR projection image of TXM-XANES recording (left) and
the reference spectra dictionary (right).
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Fig. 11. The chemical state maps, generated from noisy data using various
methods, display the energy of the Ni valence state through their colors. Using
RUM enhances the interpretability of real data and enables the identification
of inter and intra-particle state differences.

D. Results of real dataset

We apply the proposed RUM;, and RUM,,, methods to
unmix actual real TXM-XANES data. The data comprises an
image of numerous NCM particles on a charged cathode, as
shown on the left in Fig. [[0] The exposure time for a single
frame was 0.5 seconds, and the data was captured at 117
energy points from 8180 eV to 8562 eV.

The NCM particle data exhibits an extremely low signal-
to-noise ratio, making it challenging to discern the reference
spectra of Ni elements in the range of 8180 eV to 8562
eV under practical conditions. Consequently, we can only
determine that it contains Ni at different internal states, similar
to the blind unmixing. To address this issue, we employ the
denoising algorithm [14] followed by VCA [45] to improve
the signal-to-noise ratio and dictionary extraction. We focus
on two Ni states where the reference spectra of these states
extracted from the range of 8180 eV to 8562 eV are illustrated
on the right in Fig. [[0} These techniques allowed us to
overcome the low signal-to-noise ratio and extract valuable
information from the NCM particle data.

As shown in Fig. [IT} the proposed RUM algorithms clearly
distribute chemical elements in the NCM particle structure.
Note that RUM;, has some theoretical guarantee on the con-
vergence while the RUM,,, show better unmixing results in the
synthetic experiments. On the other hand, due to the high noise
levels in each projection image of NCM particles, the chemical



map obtained using edge-50 and LCF fail to provide any
meaningful information. Our methods simultaneously unmix
and denoise the chemical imaging data, avoiding the accumu-
lated error if we split these two processes. Additionally, the
chemical phase map of NCM particles indicates an uneven re-
action of the battery electrode, with some particles exhibiting a
higher Ni valence state and others showing a lower Ni valence
state. The utilization of the RUM unmixing method opens up
avenues for enhanced understanding of spatiotemporally elec-
trochemical reactions, enabling more profound insights and
facilitating the optimization of composite electrode designs.

VI. CONCLUSION

This paper introduced a robust spectra unmixing framework
to extract the chemical phase map signal for the widely-used
X-ray imaging technique. Our proposed framework consid-
ered variance in spectra and maximized the use of spatial-
spectral priors in X-ray microspectroscopy. It outperforms
traditional methods when dealing with strong noise and spec-
tral variability. Additionally, the framework exhibits favorable
convergence properties for TV regularization, while the PnP
prior performs better. Our future study includes the theoretical
analysis of the proposed framework with the PnP prior.
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