Unsupervised Selective
Labeling for More
Effective Semi-Supervised
Learning



Introduction

* The lower the annotation level, the more important what the
labeled instances are to SSL.

* Random sampling: Fail to cover all semantic classes
 Stratified sampling: Unlabeled instances
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* Given only an annotation budget and an unlabeled dataset, select
a fixed number of instances for labeling, which way would lead to
the best SSL model performance when it Is trained on such
partially labeled data?



* Representative: facilitate label propagation to unlabeled data
* Diverse: ensure coverage of the entire dataset

* STEP1: Unsupervised feature learning that maps data into a
discriminative feature space.

* STEP2: Select instances for labeling for maximum
representativeness and diversity, without or with additional
optimization.

* STEP3: Apply SSL to the labeled data and the rest unlabeled data.



Selective Labeling for Semi-supervised
Learning

 Dataset: unlabeled dataset of 77 Instances

* Task: select m (m <K n) instances for labeling, so that a SSL model
trained on such a partially labeled dataset produces the best
classification performance.



1.Unsupervised Representation Learning

* Obtain lower-dimensional and semantically meaningtul features
with unsupervised contrastive learning

* Map x; onto a d-dimensional hypersphere with L?* normalization,
denoted as f(x;)



2-1. Unsupervised Selective Labeling (USL)

* We study the relationships between data instances using a
weighted graph.

* Nodes {V;} : instances in the (normalized) feature space {f (x;)}

1 ) : . \
— Dy; = || f(zi) — fz;)]

'EdgesDU



Representativeness: Select Density Peaks

* The K-nearest neighbor density (K-NN) estimation
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 Where 4a=7%"?/I'(5+1) s the volume of a unit d-dimensional ball
k(1) Instance I's kth nearest neighbor.

* For robustness, we replace 1t with the average distance
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Diversity: Pick One in Each Cluster

* K-Means clustering that partitions 7 instances into 7(< n) clusters,
with each cluster represented by its centroid ¢ and every instance
assigned to the cluster of the nearest centroid.

* we seek m-way node partitioning S = {51, 55, ..., 5} that
minimizes the within-cluster sum of squares:
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* It Is optimized iteratively with EM. We then pick the most
representative instance of each cluster.



b) local + global c) local + global + reg.

a) local only



Regularization: Inter-cluster Information
Exchange
« V' ={V{,...Vi}: the set of m instances selected at iteration t.

* For each candidate V; In cluster 5;, the farther it is away from
those in other clusters in V=1 the more diversity it creates.

* \We thus minimize the total inverse distance to others
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* At Iteration t, we select instance | of the maximum regularized

utility within each cluster
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2-2. Training-Based Unsupervised Selective
Labeling (USL-T)

* Global Constraint via Learnable K-Means Clustering

* Jointly learn both the cluster assignment and the feature space for
unsupervised Instance selection

* Suppose that there are C centroids initialized randomly. For
INstance x with feature f(x), we infer one-hot cluster assignment
distribution y(x) by finding the closest learnable centroid ¢;, 1€
{1,. .., C} based on feature similarity s:

G {l. if ¢ = argminge(q,.. ¢y S(f(x),ck)

0, otherwise.

* We predict a soft cluster assignment y(x)
es(f(@).c:)
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* Minimizing the KL divergence between soft and hard assignments

Dyr(y(x) ?)(_-"51-7))

* Each instance to become more similar to its centroid (adjust (X))

* The learnable centroid to become a better representative of
Instances In the cluster (adjust c)



* Hardening soft assignments has a downside: Initial mistakes are
hard to correct with later training, degrading performance

* Qur solution Is to Ignore ambiguous Instances with maximal
softmax scores below threshold T:

Laiobal ({Ti }ie1) = = Z | Dy (y(x:) | g(x;))
max(y(xz;))>T1
* As Instances are more confidently assigned to a cluster with more
training, more instances get involved in shaping both feature f(x)

and clusters {c;}



* Our global loss can be readily related to K-Means clustering

* For T = 0 and fixed feature f, optimizing Lgiopar 1S €quivalent to
optimizing K-Means clustering with a regularization term on
Inter-cluster distances that encourage additional diversity.
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* Local Constraint with Neighbor Cluster Alignment

* Soft assignments usually have low confidence scores for most
Instances at the beginning

* Assigning an Instance to the same cluster of its neighbors’ in the
unsupervisedly learned feature space to prepare confident
predictions for the global constraint to take effect

* Two types of collapses:
* (1) Predicting one big cluster for all the instances

* (2) Predicting a soft assignment that Is close to a uniform
distribution for each instance



* For one-cluster collapse

* we adopt a trick for long-tailed recognition and adjust logits to
prevent their values from concentrating on one cluster:
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* For even-distribution collapse

* we use a sharpening function to encourage the cluster
assignment to approach a one-hot probability distribution.
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 We restrict x; to x's k nearest neighbors, selected according to
the unsupervisedly learned feature prior to training and fixed for
simplicity and efficiency.

* Final loss adds up the global and local terms with loss weight A:
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* Neither one-cluster nor even-distribution collapse is optimal
to our local constraint, 1.e., P(y(z'),5(2'),t) # §(z)
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* OQur USL-T I1s an end-to-end unsupervised feature learning
method that directly outputs m clusters for selecting m diverse
Instances.

* For each cluster, we then select the most representative instance,
characterized by i1ts highest confidence score max ¢(x)

* Just as USL, USL-T improves model learning efficiency by
selecting diverse representative instances for labeling, without
any label supervision



MAK

USL-T

unlabeled seed training dataset

Dataset
+ sampling dataset
Task retrieve an extra set to enhance self-
supervised representation learning
Training contrastive learning
Framework
Tailness
LfcL;i = Eo, .0, 2~ (LoLi(0i1,0:i2;7,vi, V7))
Proximity
PrlnC|p|eS D(s = sl| Z 1121:1
Diversity

Sanr) = max min A(w;,x;)
1€San jeEstUs?

H(s*Us®,

unlabeled dataset,
without external data

select partial instances for labeling, so that a
SSL produces the best classification performance

semi-supervised learning

Representative for each cluster

max ¢(x)
Diversity
. 1 .
Lgiobal ({Ti}iey) = = Z Dxr (y(x:) || 9(xi))
max(g(zi))>T
Lloca.l z}z 1 ZDKL ( z)7t)||g(~1’z))

L == Lglobal + /\L'lc)cal



