# Physics-Embedded Machine Learning for Electromagnetic Data Imaging

Examining three types of data-driven imaging methods

Rui Guo , Tianyao Huang , Maokun Li , Haiyang Zhang , and Yonina C. Eldar

# CONTENTS

- Introduction
- Formulations and challenges of EM imaging
- Learning after physics processing
- Learning with physics loss
- Learning with physics models
- Challenges and opportunities

### Introduction

• Electromagnetic(EM) imaging:

measured EM fields  $\rightarrow$  the value distribution of EM parameters

- permittivity(介电常数), permeability(磁导率), conductivity(电导率)
- Biomedicine: microwave imaging

detect anomalies in the permittivity distribution caused



FIGURE 1. The EM-imaging setup. EM imaging converts measured data to the spatial distribution of electric parameters in the Dol.

- EM field propagates according to **Maxwell's equations**, which describe how electric and magnetic fields are generated by charges, currents, and changes of the fields.
- In the frequency domain, EM propagation can be described by the following PDE:

$$\nabla \times \nabla \times \mathbf{E}(\mathbf{r}) - \omega^2 \mu \epsilon(\mathbf{r}) \mathbf{E}(\mathbf{r}) = i \omega \mu \mathbf{J}(\mathbf{r})$$

measurement

- E: vector electric field
- **r**: spatial position
- μ: permeability
- J: electric current source
- $\omega$ : angular frequency
- $\nabla \times$ : curl operator

# Formulations of EM imaging

- EM imaging: an **inverse problem** that calculates electric parameters of the domain of investigation(DoI) from measured EM fields.
- It can be described as minimizing the "misfit" between the observed and simulated data:

$$L(\boldsymbol{\epsilon}) = \left\| \mathbf{d}_{\text{obs}} - F(\boldsymbol{\epsilon}) \right\|^2 + \lambda \phi_r(\boldsymbol{\epsilon})$$

where  $d_{obs}$  is the field observed by receivers,  $\varepsilon$  is complex permittivity,  $F(\varepsilon)$  represents the EM-modeling function,  $\Phi_r$  is the regularization term, and  $\lambda$  is a regularization factor.

• Equation is usually minimized by iterative gradient descent methods.

# Challenges of EM imaging

- Each iteration requires computing the forward problem and its Fréchet derivative, which make this problem **computationally intensive**.
- The objective function is **nonconvex**.
- Gradient descent methods lack flexibility in exploiting the prior knowledge that is not described by simple regularization.

- Physics-embedded ML models provide potential solutions to the challenges.
- 1. Use conventional physical methods and ML models sequentially
- 2. Optimize network parameters with physics constraints
- 3. Unroll the physical methods with neural networks



FIGURE 2. The three ways of incorporating physics into the ML model. (a) Learning after physics processing: the physics model is employed to initialize the input of ML models. (b) Learning with physics loss: physics knowledge is incorporated into the loss functions. (c) Learning with physics models: physics knowledge is used to guide design of the ML architecture.

# Learning after physics processing

- Two steps:
  - A roughly estimated image is recovered using classical qualitative or quantitative methods.
  - The rudimentary image is polished using a DNN trained with the ground truth as labels. (image processing)
- In DNN, the more the input is processed by physics, the better the generalizability will be.

### Learning with physics loss

• Incorporating Forward Modeling in Loss: A Mathematical Example

If the forward process has analytical solutions  $m \coloneqq F(p) = p^2$ , the inversion has two branches of solutions  $p = \pm \sqrt{m}$ 



**FIGURE S1.** Incorporating forward modeling into training to reduce nonuniqueness of the inverse problem [19]. (a) When training is supervised by  $p(\pm\sqrt{m})$ , the predictions are zeros and (b) when training is supervised by labels  $p^2$ , the correct branch can be predicted by controlling the signs of solutions.

#### Training with a rigorous measurement loss

- Consider the inverse problem solved by a DNN with the measured data d as the input and the permittivity  $\epsilon$  as the output.
- Let  $\epsilon_T$  and  $d_T$  denote the labeled permittivity and EM data, respectively.
- Purely data-driven imaging use permittivity loss for training:

$$L_{\boldsymbol{\epsilon}} = \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_T \right\|^2$$

• The physics-embedded one further incorporates the measurement loss:

$$L = \alpha L_{\epsilon} + \beta L_{d} = \alpha \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{T} \|^{2} + \beta \| F(\boldsymbol{\epsilon}) - \mathbf{d}_{T} \|^{2}$$

#### Training with a learned measurement loss

- Surrogate the numerical forward solver  $F(\cdot)$  with a DNN  $\Theta_F(\cdot)$
- The training contains two stages: 1) training the forward solver 2) training the inverse operator

$$\Theta_F^* = \arg\min_{\Theta_F} \|\Theta_F(\boldsymbol{\epsilon}_T) - \mathbf{d}_T\|^2,$$
  
$$\Theta_I^* = \arg\min_{\Theta_I} \|\Theta_F^*(\Theta_I(\mathbf{d}_T)) - \mathbf{d}_T\|^2.$$

• Both stages take the measurement misfit as the loss function, which involves physical rules.

#### Training with a PDE-constrained loss

- The PDE-constrained loss inserts PDEs into the loss function.
- Physics-informed neural network (PINN)

Consider the 1D time-domain electromagnetic wave equation

$$\frac{\partial^2 E(x,t)}{\partial x^2} - \mu \epsilon(x) \frac{\partial^2 E(x,t)}{\partial t^2} = 0$$
 (S2)

where E is the electric field,  $\epsilon$  is permittivity,  $\mu$  is permeability, and t and x are the time and spatial coordinate, respectively. Together with some boundary conditions, the equation can be analytically or numerically solved to yield E (forward problem) or  $\epsilon$  (inverse problem) given t and x.

Take the inverse problem with one-source multiple receivers as an example. A physics-informed neural network (PINN) specifies two separate deep neural networks (DNNs), namely,  $\Theta_F$  and  $\Theta_I$ . The input of  $\Theta_F$  is x and t and its output is the electric field  $\tilde{E}$ , denoted by  $\tilde{E} = \Theta_F(x, t)$ . Similarly, the input of  $\Theta_I$  is x and its output is permittivity  $\tilde{\epsilon}$ , denoted by  $\tilde{\epsilon} = \Theta_I(x)$ . The two separate DNNs are simultaneously trained with a shared loss function L, which includes a supervised measurement loss of E regarding initial and boundary conditions

$$L_{\text{data}} = \frac{1}{N_{\text{data}}} \sum_{i=1}^{N_{\text{data}}} (\tilde{E}(x_i, t_i) - E_T(x_i, t_i))^2$$
(S3)

and an unsupervised loss of partial differential equation constructed according to (S2)

$$L_{\text{PDE}} = \frac{1}{N_{\text{PDE}}} \sum_{j=1}^{N_{\text{PDE}}} \left( \frac{\partial^2 \tilde{E}(x_j, t_j)}{\partial x^2} - \mu \tilde{\epsilon}(x_j) \frac{\partial^2 \tilde{E}(x_j, t_j)}{\partial t^2} \right)^2 \quad \text{(S4)}$$

given by  $L = \alpha_{data}L_{data} + \alpha_{PDE}L_{PDE}$ . Here  $(x_i, t_i)$  and  $(x_j, t_j)$ are sampled at the initial/boundary position and in the domain of investigation (Dol), respectively. In addition,  $E_T$  is the labeled measurement,  $N_{data}$  is the number of labeled samples,  $N_{PDE}$  is the number of unlabeled samples in the Dol, and  $\alpha$ . are weights. The partial differentiations are achieved by the automatic differentiation in the deep learning framework. After training, one can use  $\Theta_I$  to predict permittivity at arbitrary location x. Therefore, the PINN is mesh free.

### Learning with physics models

- Unrolling measurement-to-image mapping(inverse)
- Unrolling image-to-measurement mapping(forward)
- Simultaneously unrolling both mappings

Unrolling measurement-to-image mapping(inverse)

- We demonstrate the unrolling of **linear** inverse problems through radar imaging. Here, the electric parameters of interest are **intensities of** scatterers in the Dol, denoted by  $\varepsilon$ .  $F(\epsilon) = \Phi \epsilon$
- Conventional radar imaging can be formulated as a compressed sensing problem:

$$\min_{\boldsymbol{\epsilon}} \| \mathbf{d}_{\text{obs}} - \boldsymbol{\Phi} \boldsymbol{\epsilon} \|^2 + \lambda \| \boldsymbol{\epsilon} \|_1$$

• Iterative Shrinkage Thresholding Algorithm(ISTA):

$$\boldsymbol{\epsilon}_{k} = \boldsymbol{\mathcal{S}}_{\frac{\lambda}{L}} \left( \frac{1}{L} \boldsymbol{\Phi}^{H} \boldsymbol{\mathrm{d}}_{\text{obs}} + \left( \boldsymbol{I} - \frac{1}{L} \boldsymbol{\Phi}^{H} \boldsymbol{\Phi} \right) \boldsymbol{\epsilon}_{k-1} \right)$$

- Learned ISTA(LISTA): learn  $\lambda/L$ ,  $(1/L)\Phi^H$  and  $(I (1/L)\Phi^H\Phi)$
- Embedding physics models into the neural networks reduces the number of variables while maintaining fast convergence rate.

- Embedding physics models into the neural networks reduces the number of variables while maintaining fast convergence rate.
- The mutual inhibition matrix  $I (1/L)\Phi^H \Phi$  has a Toeplitz or a doubly block Toeplitz structure due to the nature of radar-forward models.

$$A = \begin{bmatrix} a_0 & a_{-1} & a_{-2} & \dots & a_{-(n-1)} \\ a_1 & a_0 & a_{-1} & \ddots & & \vdots \\ a_2 & a_1 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2} \\ \vdots & & \ddots & a_1 & a_0 & a_{-1} \\ a_{n-1} & \dots & a_2 & a_1 & a_0 \end{bmatrix}$$

• The objective function of **nonlinear** EM imaging

 $\|\mathbf{d}_{obs} - F(\boldsymbol{\epsilon})\|^2$ , where  $F(\boldsymbol{\epsilon})$  is numerically solved from PDEs

• Gauss–Newton method:

$$\boldsymbol{\epsilon}_{k+1} = \boldsymbol{\epsilon}_k + (\mathbf{S}^H \mathbf{S})^{-1} \mathbf{S}^H (\mathbf{d}_{\text{obs}} - F(\boldsymbol{\epsilon}_k))$$

where S is the Fréchet derivative of F at  $\varepsilon_0$ .

• By unrolling, a set of descent directions *K*s can be learned, which is called the supervised descent method(SDM)

$$\boldsymbol{\epsilon}_{k+1} = \boldsymbol{\epsilon}_k + \mathbf{K}_k (\mathbf{d}_{\text{obs}} - F(\boldsymbol{\epsilon}_k))$$

- In training, the EM response is taken as the input, while the corresponding ground truth of complex permittivity is the label.
- The SDM shows high generalizability in EM imaging.



FIGURE 4. Imaging with the SDM for geophysics [55], microwave [21] and biomedical data [61]. The SDM is able to reconstruct complex inhomogeneous media while the training scenarios are simple. CT: computerized tomography.

Unrolling image-to-measurement mapping(forward)

#### • Unrolling the integral operation

The integral form of the wave equation is

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}^{\text{inc}}(\mathbf{r}) + \omega^2 \mu \int_V \vec{\mathbf{G}}_0(\mathbf{r}, \mathbf{r}') [\epsilon(\mathbf{r}') - \epsilon_0] \mathbf{E}(\mathbf{r}') d\mathbf{r}'$$

where  $E^{inc}$  is the incident field generated by the source,  $G_0$  is the Green's function describing wave propagation,  $\varepsilon_0$  is the permittivity of the background, and V is the Dol.

Physics-embedded DNN (PE-Net)

The forward modeling  $F(\varepsilon)$  involving integral operations is unrolled as a physics-embedded network  $\Theta_F$ .

After the networks are trained, they are combined with generic networks  $\Theta_I$  that perform inverse mappings.

- Solving the integral form is simplified as calculating x (representing the unknown E) from A(ε)x = b
- Conjugate Gradient Method

compute the conjugate direction **p** and update the solution in an iterative manner

• Update-learning Method

iterations in conjugate gradient approach are unrolled by N neural network blocks

| Conjugate gradient method.                                                                           |
|------------------------------------------------------------------------------------------------------|
| 1: Input $\mathbf{x}_0$                                                                              |
| 2: $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0,  \mathbf{p}_1 = \mathbf{r}_0$                |
| 3: $\alpha_1 = (\mathbf{r}_0^T \mathbf{r}_0) / \mathbf{p}_1^T (\mathbf{A} \mathbf{p}_1)$             |
| 4: $\mathbf{x}_1 = \mathbf{x}_0 + \alpha_1 \mathbf{p}_1$                                             |
| 5: for $k=1,2,\ldots$ until $\ \mathbf{r}_k\  \leq \varepsilon$                                      |
| 6: $\mathbf{r}_k = \mathbf{r}_{k-1} - \boldsymbol{\alpha}_k (\mathbf{A}\mathbf{p}_k)$                |
| 7: $\beta_{k+1} = (\mathbf{r}_k^T \mathbf{r}_k) / (\mathbf{r}_{k-1}^T \mathbf{r}_{k-1})$             |
| 8: $\mathbf{p}_{k+1} = \mathbf{r}_k + \boldsymbol{\beta}_{k+1} \mathbf{p}_k$                         |
| 9: $\alpha_{k+1} = (\mathbf{r}_k^T \mathbf{r}_k) / \mathbf{p}_{k+1}^T (\mathbf{A} \mathbf{p}_{k+1})$ |
| 10: $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_{k+1} \mathbf{p}_{k+1}$                                |

| Update-learning method.                                                                                          |
|------------------------------------------------------------------------------------------------------------------|
| 1: Input $\mathbf{x}_0$                                                                                          |
| 2: $r_0 = b - Ax_0, p_1 = r_0$                                                                                   |
| 3: $\mathbf{x}_1 = \mathbf{x}_0$                                                                                 |
| 4: for $k = 1, 2,, N$ ,                                                                                          |
| 5: $\mathbf{r}_k = \mathbf{b} - \mathbf{A}\mathbf{x}_k$                                                          |
| 6: $\mathbf{p}_{k+1} = \Theta_p^k(\mathbf{p}_k, \mathbf{r}_k, \mathbf{r}_{k-1})$                                 |
| 7: $\mathbf{x}_{k+1} = \mathbf{x}_k + \Theta_{dx}^k(\mathbf{p}_{k+1}, \mathbf{A}\mathbf{p}_{k+1}, \mathbf{r}_k)$ |



**FIGURE 5.** Physics-embedded DNNs for microwave imaging [22], where the forward modeling is unrolled into a neural network. The parameters of the forward solver  $\Theta_F$  are fixed when training the inverse networks  $\Theta_I$ s.

$$\boldsymbol{\epsilon}_{K} = \boldsymbol{\Theta}_{I}(\boldsymbol{\epsilon}_{0}, \mathbf{d}_{\text{obs}}) = \boldsymbol{\epsilon}_{0} + \sum_{k=1}^{K} \boldsymbol{\Theta}_{I}^{k}(\mathbf{d}_{\text{obs}} - \boldsymbol{\Theta}_{F}(\boldsymbol{\epsilon}_{k-1}))$$

#### • Unrolling the differential operation

Unroll the time-domain wave equation with recurrent neural networks (RNNs)

$$\begin{cases} \epsilon_R \frac{\partial E_z}{\partial t} = \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} - \sigma E_z, \\ \mu \frac{\partial H_x}{\partial t} = -\frac{\partial E_z}{\partial y}, \\ \mu \frac{\partial H_y}{\partial t} = \frac{\partial E_z}{\partial x} \end{cases}$$

where **E** and **H** are the electric and magnetic fields, respectively, that are coupled with each other; the subscripts represent spatial components of the vector field. After discretization, for instance,

$$\mu \frac{H_x^{n+1/2}(i, j+\frac{1}{2}) - H_x^{n-1/2}(i, j+\frac{1}{2})}{\Delta t} = \frac{E_z^n(i, j+1) - E_z^n(i, j)}{\Delta y}$$

 $H_x^{n+1/2} = H_x^{n-1/2} + \Theta_F(E_z^n)$ 



**FIGURE 6.** The cell architecture of an RNN for simulating wave propagation [20]. At each time step, the RNN outputs the *E*-field  $E_z$  and *H*-fields  $H_x$ ,  $H_y$  in the entire DoI, which are computed from their values in the previous time step, according to Maxwell's equations. The partial derivatives are approximated with finite differences. Taking the permittivity as a trainable layer, training this network and updating its weights is equivalent to gradient-based EM imaging.

### Simultaneously unrolling both mappings

- They first reconstruct permittivity from a linear process by approximating the electric field **E** in the integration of (9) to the incident field  $E^{inc}$ .
- Intermediate parameters, e.g., total field and contrast source, can be estimated with this permittivity.
- A more accurate permittivity model is computed from the intermediate parameters and measurements.



**FIGURE 7.** Simultaneously unrolling forward and inverse processes into neural networks [16]. The forward process (in green) computes the contrast source J and total field E' given permittivity, while the inverse process (in blue) infers permittivity from measurements J and E'.

### Comparisons



• Contrast source network(CS-Net):

gradient-based optimization, whose initial guess is provided by a DNN

• Back Projection Scheme (BPS):

learning after physics processing

Supervised descent method(SDM):

unroll the inverse mapping

• Physics-embedded DNN (PE-Net):

unroll the forward mapping

 Physical model-inspired neural network (PM-Net):

unroll both mappings

# Challenges and opportunities

#### • Data

Obtain the exact electric properties of targets.

#### • Physics

Incorporate physics theory into data-driven methods. The Dol is partitioned into triangle (2D) or tetrahedral (3D) elements.

#### • Algorithm

The credibility of predictions needs to be improved.

# THANKS