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Introduction
• Electromagnetic(EM) imaging: 

measured EM fields → the value distribution of EM parameters
• permittivity(介电常数), permeability(磁导率), conductivity(电导率)
• Biomedicine: microwave imaging

detect anomalies in the permittivity distribution caused



• EM field propagates according to Maxwell’s equations, which describe how 
electric and magnetic fields are generated by charges, currents, and changes 
of the fields.

• In the frequency domain, EM propagation can be described by the following 
PDE:

E: vector electric field
r: spatial position
μ: permeability
ε: complex permittivity, σ is conductivity
J: electric current source
ω: angular frequency
▽×: curl operator

measurement

recover



Formulations of EM imaging

• EM imaging: an inverse problem that calculates electric parameters of the 
domain of investigation(DoI) from measured EM fields. 

• It can be described as minimizing the “misfit” between the observed and 
simulated data: 

where 𝑑𝑜𝑏𝑠 is the field observed by receivers, 𝜀 is complex permittivity, 𝐹(𝜀)
represents the EM-modeling function, Φ𝑟 is the regularization term, and 𝜆 is 
a regularization factor. 
• Equation is usually minimized by iterative gradient descent methods.



Challenges of EM imaging

• Each iteration requires computing the forward problem and its Fréchet 
derivative, which make this problem computationally intensive.

• The objective function is nonconvex.
• Gradient descent methods lack flexibility in exploiting the prior knowledge 

that is not described by simple regularization.



• Physics-embedded ML models 
provide potential solutions to 
the challenges. 

1. Use conventional physical 
methods and ML models 
sequentially

2. Optimize network parameters 
with physics constraints

3. Unroll the physical methods 
with neural networks



Learning after physics processing

• Two steps:
• A roughly estimated image is recovered using classical qualitative or quantitative 

methods.
• The rudimentary image is polished using a DNN trained with the ground truth as labels. 

(image processing)

• In DNN, the more the input is processed by physics, the better the 
generalizability will be.



Learning with physics loss
• Incorporating Forward Modeling in Loss: A Mathematical Example
If the forward process has analytical solutions 𝑚 ≔ 𝐹 𝑝 = 𝑝2, the inversion 
has two branches of solutions 𝑝 = ± m



Training with a rigorous measurement loss

• Consider the inverse problem solved by a DNN with the measured data d as 
the input and the permittivity ε as the output.

• Let ε𝑇 and d𝑇 denote the labeled permittivity and EM data, respectively.
• Purely data-driven imaging use permittivity loss for training:

• The physics-embedded one further incorporates the measurement loss: 



Training with a learned measurement loss

• Surrogate the numerical forward solver 𝐹(·) with a DNN Θ𝐹(·)
• The training contains two stages: 1) training the forward solver  2) training 

the inverse operator

• Both stages take the measurement misfit as the loss function, which involves 
physical rules.



Training with a PDE-constrained loss

• The PDE-constrained loss inserts PDEs into the loss function.
• Physics-informed neural network (PINN)

②

①



Learning with physics models

• Unrolling measurement-to-image mapping(inverse)
• Unrolling image-to-measurement mapping(forward)
• Simultaneously unrolling both mappings



Unrolling measurement-to-image mapping(inverse)

• We demonstrate the unrolling of linear inverse problems through radar 
imaging. Here, the electric parameters of interest are intensities of 
scatterers in the DoI, denoted by ε.

• Conventional radar imaging can be formulated as a compressed sensing 
problem:

• Iterative Shrinkage Thresholding Algorithm(ISTA):

• Learned ISTA(LISTA): learn
• Embedding physics models into the neural networks reduces the number of 

variables while maintaining fast convergence rate. 



• Embedding physics models into the neural networks reduces the number of 
variables while maintaining fast convergence rate. 

• The mutual inhibition matrix                            has a Toeplitz or a doubly 
block Toeplitz structure due to the nature of radar-forward models.



• The objective function of nonlinear EM imaging

• Gauss–Newton method:

where 𝑆 is the Fréchet derivative of 𝐹 at ε0.
• By unrolling, a set of descent directions 𝐾s can be learned, which is called 

the supervised descent method(SDM)

• In training, the EM response is taken as the input, while the corresponding 
ground truth of complex permittivity is the label. 

• The SDM shows high generalizability in EM imaging. 





Unrolling image-to-measurement mapping(forward)

• Unrolling the integral operation
The integral form of the wave equation is

where 𝐸𝑖𝑛𝑐 is the incident field generated by the source, 𝐺0 is the Green’s 
function describing wave propagation, ε0 is the permittivity of the background, 
and V is the DoI.
• Physics-embedded DNN (PE-Net) 
The forward modeling 𝐹(ε) involving integral operations is unrolled as a 
physics-embedded network Θ𝐹.
After the networks are trained, they are combined with generic networks 
Θ𝐼 that perform inverse mappings. 



• Solving the integral form is simplified as calculating x (representing the unknown 
E) from

• Conjugate Gradient Method
compute the conjugate direction p and update the solution in an iterative manner
• Update-learning Method
iterations in conjugate gradient approach are unrolled by N neural network blocks





• Unrolling the differential operation
Unroll the time-domain wave equation with recurrent neural networks (RNNs)

where E and H are the electric and magnetic fields, respectively, that are 
coupled with each other; the subscripts represent spatial components of the 
vector field. After discretization, for instance,





Simultaneously unrolling both mappings

• They first reconstruct permittivity from a linear process by approximating the 
electric field E in the integration of (9) to the incident field 𝑬𝒊𝒏𝒄.

• Intermediate parameters, e.g., total field and contrast source, can be 
estimated with this permittivity. 

• A more accurate permittivity model is computed from the intermediate 
parameters and measurements.



Comparisons

• Contrast source network(CS-Net): 

gradient-based optimization, whose initial guess 
is provided by a DNN

• Back Projection Scheme (BPS):

learning after physics processing

• Supervised descent method(SDM):

unroll the inverse mapping

• Physics-embedded DNN (PE-Net):

unroll the forward mapping

• Physical model-inspired neural network 
(PM-Net):

unroll both mappings



Challenges and opportunities

• Data
Obtain the exact electric properties of targets.
• Physics
Incorporate physics theory into data-driven methods. The DoI is partitioned 
into triangle (2D) or tetrahedral (3D) elements.
• Algorithm
The credibility of predictions needs to be improved. 
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