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Introduction
• Penalized least squares
computationally expensive iterative solvers

highly dependent upon the regularization

• Deep learning (DL)
usually based on supervised training

• Generative neural network
potential to be used for unsupervised learning

learn the distribution of the real-world data

can incorporate the relevant physical laws and 
constraints of the measurement process



Foundations for inverse imaging problems 
with generative models

• 𝑃(x|y)= 𝑃 𝑦 𝑥 𝑃(𝑥)
𝑃(𝑦)

• The measurement likelihood 𝑃 𝑦 𝑥 is sometimes available from the 
physics of the measurement process.

• The prior distribution 𝑃(𝑥) is usually hard to model for computational 
imaging problems.

• To model the unknown prior distributions, we need to use data-driven 
methods. Generative models are especially useful in learning the prior 
distribution.

Bayesmapproach
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• Advantage
easy and fast to train 

• Limitation
is often restricted to 

simple distributions
inherent discrepancy between                      
and             remains
it cannot provide the exact 
likelihood 





GANs ( GenerativeAdversar.at/Network)
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• Wasserstein-GAN
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Score-based generative models
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Physics-driven applications

• Generative modeling for cryo-EM analysis
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VAE-based generative models
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GAN-based generative models
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• Score-based generative models for sparse-view CT and 
accelerated MRI
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Summary and future outlook

• cryo-EM 
• more systematic quantitative comparisons to choices and hyperparameters
• provide physical or biological meaning to the distance between the latent 

space of conformation variables
• still lack a standardized measure or gold-standard task to evaluate how well a 

method is able to capture the heterogeneit

• score-based approaches
• slow convergence


