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Introduction

In computational imaging, an image sensor measurement
y € Y from an underlying unknown image x € X is usually
described by

y=H(x)+e¢ (1)

where ¢ is measurement noise and H : X — VY is a forward
mapping arising from the imaging physics.

* Penalized least squares

computationally expensive iterative solvers
highly dependent upon the regularization

* Deep learning (DL)

usually based on supervised training

 Generative neural network

potential to be used for unsupervised learning
learn the distribution of the real-world data

can incorporate the relevant physical laws and
constraints of the measurement process



Foundations for inverse imaging problems
with generative models

P(Y[X)P(x)
+ P(xly)= "2

* The measurement likelihood P(y|x) is sometimes available from the
physics of the measurement process.

* The prior distribution P(x) is usually hard to model for computational
Imaging problems.

* To model the unknown prior distributions, we need to use data-driven

methods. Generative models are especially useful in learning the prior
distribution.
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Fig. 5. Geometric view of deep generative models. Fixed distribution ¢ in Z is pushed to pe in A" by the network (e, so that
the mapped distribution pg approaches the real distribution p2. In VAE, (Gp works as a decoder to generate samples, while Fj
acts as an encoder, additionally constraining (4 to be as close to (. With such geometric view, auto-encoding generative models

(e.g. VAE), and GAN-based generative models can be seen as variants of this single illustration.
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The standard VAE [6] models learn the data distribution pe(x)

by assuming that the data are generated by some random pro- . ge(zlx) ?9 )
cess involving an unobserved continuous random variable z in logpe(x) = log ( / pe(x1z)p (Z)md )
the latent space Z, i.e., TWW\/ w | @ .
> log(pe(x IZ)W)([Q&(Z [ x)dz
po(x)= v/z po(x.2)dz = -/z po(x12)p(2)dz. ) =—Dk1(q¢z1%)| p@) + Ezgucciv [log po(x 12)]
Pprior = Lriro(¢, 6;x) (4)

To match the distribution pe(x) of generated samples to
the true unknown data distribution p(x), we wish to learn
(identify) the model parameters € from training data, which (/V?(F@DQ = 57 2 %(al x) M,rggx) Oti ’Q/
can be done, in principle, by maximum likelihood. However,
it is hard to learn @ by directly maximizing the likelihood in Lerso(¢,0;x) = logpe(x) — Dxi.(gs(z1%) | pe(z1x)). (5)
(3) since it is intractable to evaluate the integral in (3) in high-
dimensional space. Instead of directly evaluating the likeli- It follows that maximizing the ELBO simultaneously attempts
hood, we can compute a lower bound for the log-likelihood to maximize the data log-likelihood with respect to 6 and
of a data point, called the evidence lower bound (ELBO), or minimize the divergence between the true posterior po(z|x)
in the context of variational inference, the variational lower and its approximant ¢¢(z | x).

bound. This is done using an approximate posterior distribu-
tion g¢(z|x) for the latent variable. As we will see shortly,
this is where the probabilistic encoder comes in; its role is to
model g¢(z1x).



The approximate posterior-gg(z lx)is-assumed to be amul-
tivariate normal distribution with diagonal covariance, and the
latent variable z 1s reparameterized as

2= Up(x)+0opx)O€ (6)

where € ~ N(0,I), and O denotes the Hadamard product or
elementwise product. As shown in Figure 1, the encoder (real-
ized by an NN parameterized by ¢) outputs the mean g¢(x)
and the standard deviation o (x) given the input x.

Assuming that the prior p(z) is-a standard normal distribu-
tiony the loss function for training the VAE model end to end is
to minimize the negative ELBO with respect to 6, ¢

Lvae(0,¢) = Expe[—LeBo(¢,0:x)|

N ,
= 215 (lasx
i=1

i —2||log(asx™)) |,

s+ o)

L

—1)— % Z log po(x1z"") (7)

[=1

* Advantage
easy and fast to train

e Limitation

q¢(z1x) |5 often restricted to
simple distributions

Inherent discrepancy between g4z lx)
and pe(zlx) remains

It cannot provide the exact
likelihood
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FIGURE 1. The standard VAE structure with probabilistic encoder and decoder. The sampled latent vec-
tor is constructed through the reparameterization trick in (6). Std. dev.: standard deviation.



GANS ( (renerative, Adlversariof /\/@twark)

A GAN [7], 8], [23] (Figure 2) is composed of a generator Ge,
which, when driven by Gaussian random vectors .z ~N(0,1),
generates samples from the generator distribution pgen, and
a discriminator Dy that compares the data distribution pgaea
with  pgen. Both are implemented by NNs, with parameters
0, ¢. GANs pose generative modeling as a problem of mini-
mizing a statistical distance or divergence between probabil-
ity distributions. The f~GAN [23] uses the f-divergence as the
measure of the divergence between two distributions P and Q
with density function p and ¢

p(x ))
Ds(P ( 8
(Ploy= [ awf q(x) (8)
where the function f:R; — R is a convex lower-semicon-
tinuous function satisfying f(1) =0. For example, taking
f(s) = slogs, the f~divergence becomes the KL divergence.

Sampled
Real Data

li
Generator

z | . Gy 1 X

Update Discriminator
to Maximize the Loss

{Loss

Generated Data

Update Generator to
Minimize the Loss

FIGURE 2. The standard GAN architecture.
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where

Lcan(Dg,Go) := Expu.[logDg(x)]
+ E.[log(1 = Dg¢(Ge(2))]. (10)

The discriminator output Dy (x) € [0, 1], with a value close to
one, indicating a sample likely drawn from the data distribu-
tion, whereas a value close to zero indicates a “fake” (unlikely)
sample. The min-max problem (9) is therefore interpreted as a
game between two adversaries—the discriminator, trying to
improve its detection of fake samples, and the generator, trying
to improve its ability to fool the discriminator.

It was found that GANSs using statistical discrepancy mea-
sures such as the Jensen—Shannon divergence are especially
hard to train, in part because the divergence measure between
two-distributions “‘'saturates” (to-infinity) when their support
does not overlap. This scenario is common in the case of image
data, which typically lie on (or close to) a low-dimensional
manifold in the ambient space, which with high probabil-
ity does not intersect with the corresponding manifold of the
untrained generator. This leads to the vanishing of the gradi-
ents of the training loss function, preventing convergence.



* \Wasserstein-GAN

p-Wasserstein distance between distributions pgaa and pgen 18
defined as

inf  (Eayollx=y['D" @an

W;(v Ddata, Pgen) =
! [ 1 = /‘:n‘[’ data, Pgen)

Estimating the Wasserstein distance in high-dimensional
space is, however, not straightforward. Arjovsky et al. [8]
applied the Kantorovich—Rubinstein duality to the 1-Wasser-
stein distance, which states

Wi ( paata, [7gen) — | iup ]Exv-p.m..l'f(x_)] - E-\"“'Pp‘n [f(x)] (12)
flluip=1
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where the supremum is taken over all 1-Lipschitz functions,
| £ |Lip =1, which means that | f(x1) — f(x2)| =[x — x2|: for
all x1, x> € X. The function fis approximated by a deep NN
Dy with parameters ¢. Therefore, the Wasserstein GAN 1is
formulated as

min max {Ey p..[Dex)|—E:[Dg¢(Ge(z))]} (13)

Go |Dy|Lip=1

and various ways have been suggested to enforce the Lipschitz
constraint [24].

Howeser, they re hargl Yo train becasse of the
fwin—max Nopmry, 0]£ DTh‘wﬁzoﬁr/im vbj’uﬁvu,,



Score-based generative models

Score-based génerative models [11], [12], [14] generate new data
from noise through learning the gradient of the log probability
of the data; also known as the score function [29]. To see why
score matching is useful in learning a data distribution, let’s
first consider a probability density function defined in terms
of a parameterized function fo as pe(x) = (e "%/ Zy), where
Zo (a so-called partition function) is a normalizing constant
such that f,\' pe(x)dx = 1. The parameterized function fo(x) is
often called an energy-based model.

so(x) = Vilog pe(x) = =Vifo(x) — Vilog Ze = —Vi fo(x). (14)

=0

Therefore, the score-based models are trained by minimizing
the Fisher divergence between the model and the data distribu-

tions, K| se(x) — Vilogpe (x)||%.
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Another important ingredient in the score-based genera-
tive models is modeling the process that transforms the data to

noise and its reverse process. OL\W‘ on o al,o{

g Forward SDE (Data — Noise)

dx = a(x, t)dt + b(t) dw

-

Score Function

‘ dx = [a (x, f) o= b(t)z ] dt + b(l)dﬁ_’ //"" \\

Reverse SDE (Noise — Data)

FIGURE 3. An illustration of the score-based generative model. The
forward continuous time SDE transforms data to an image sampled from
a simple noise distribution. This process can be reversed if we know
V.logp.(x) (the score function of the distribution) at each intermediate
time step. We can sample a data point through evolving a noise image
through the reverse-time SDE.
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x()=a(x(0)+ B(ne, €~ N(0,T). (16)

The forward process in (16) is used to generate the training
data x (1) for 1 €(0, T to learn the gradient of the log prob-
ability of the data (score function).

The model is trained by minimizing the weighted Fisher
divergence between the model and data distributions and over
the time interval [0, T'|

m()in Et~Umform(0.'l') [A(I)EX(O)"IM;.IHEX“”X(O) ” Se(x(f), 1)

Vi logpor(x (1) x(0)) ] (18)

where the weight A(r) >0 is typically chosen as 1/A(1) «
E %00~ pass Ex x| Vlog por (x (£)| x (0)) |15 In the training, the
expectations in the loss function (18) are replaced by empirical
means by sampling x(0) from the training data, and for each
x(0), sampling x(¢) according to (16).

Aftertraining, there are a few different ways to sample the dis-
tribution and generate new data x(0) ~ paua from x(7°) ~ pr.

Reversey SpPE

One is to use-anumerical-solver for-the. SDE-in-(17), such as
the Euler—Maruyama approach where dt is approximated by
At =(T/N), with discrete time steps 0 =19 <t ---<ty=T.
Another way is to use the‘predictor—corrector (PC) method. PC
sampling uses one step of a numerical solver, which is called
the predictor step, to generate sample x(¢;-1) from x(z;).

A fundamentally different approach to transform noise to
data is based on the theoretical result that the reverse-time
SDE can be converted into an ordinary differential equa-
tion (ODE) without changing its time-evolving distribution

{p’(x)}re[(),T]



Physics-driven applications

( Cryo- edectron mwwow)
* Generative modeling for cryo-EM analysis

Cryo-EM aims to.recover-the 3D structure-of .a-particle-of
interest V:E' -~ R (called volume) from a collection of

noisy and blurred line-integral projection images yi, ..., yn
of the volume taken at unknown projection angles with un-
known shifts. These images are obtained by examining a
frozen sample containing multiple randomly oriented and
shifted copies of the volume. The generation of image y can
be modeled as

y=Cus*S:Pr(V)+e (21)

where the Pg (V) is the tomographic projection of V rotated by
a rotation matrix R € SO(3), the group of 3D rotations

The Fourier transform of the resulting image y is modulated
pointwise by the contrast transfer function (CTF) Ca, which
is determined by the defocus value and other parameters of
the electron microscope d and is assumed to be known. In
the spatial domain, this effect corresponds to the convolu-
tion of the inverse Fourier transform of the CTF with the
projection image. We assume that € is additive WGN with
noise variance o”. The image size is D X D. According to
the Fourier slice theorem, the 2D Fourier transform of the
image 1s given by

Y (ky, ky) = Calky, ky)Se(ky, ky) V(R [ ke, ky, 0]) + € (ky, ky)

. (23)
_ (T o 2D Fovaior Gromtfonm 0‘3’ & Prejection o & 3D object con be
?R(V)(r"" y) :/ VIR r)dre, r=(roryr.)". (22) &ON/FWJCM on the set, at vaivr Troamform °T the o\ojur, M/M? [n‘f\q
ST, shift the Centered 2P projection hWmage by t;(tx/ty) Porpondki culow b the olirection ot the projection



Single conformation mode!

The traditional cryo-EM reconstruction [43] uses the.maxi-
muim-a-posteriori-(MAP)-estimate-of V from N projection
images, marginalizing over the posterior distribution of the

@=(R.1)

N
Viee= arg{/naxz log(’/;(m)xp2 p(y,-ltp, V)p((p)d(p)+ logp(V).
i=1 Mol
(24)

Multple conformation model ~~ SEvuctm ol kefwog enef *?1

In multiclass refinement [43], the image formation mode
is extended to assume that images are generated from K in-
dependent volumes, Vi,..., Vi, and the inference requires
marginalization over both the pose parameters ¢; and the
class assignment.

N K
argmax Y logjz—:_l (7[,- j;omel p(yil @. Vj)P(¢)d(p)

Vii..Vk j=|

K
-+ Z logp(V)). (25)

J=1

In CryoSPARC [44], the class assignment probabilities
are assumed to be uniform, i.e., 7;=1/K. This approach
requires prior knowledge of the number of classes and is
computationally feasible only for a small number of classes.
However, the protein conformation changes are continuous
and may be poorly approximated with a small number of
discrete volumes.



VAE-Dbased generative models

CryoDRGN (Deep Reconstructing Generative Network)
[47] employs VAE to learn a continuous low-dimensional
manifold over a protein’s conformational states from 2D
cryo-EM images in an unsupervised way and perform
ab initio (i.e., not as a refinement of an existing volume)
reconstruction of the volumes.

The model contains a standard VAE probabilistic
encoder g¢(z|yi).

The Fourier transform V of the volume in CryoDRGN
is modeled by a probabilistic decoder po(V |z, k) with two
separate inputs: 1) the latent variable z from the encoder and
2) the frequency k.

3D coordinate k €[—0.5,0.5]°, CryoDRGN use positional
encoding p :[—0.5,0.5F — [~1,1]*” to-map-the 3D coordi-
nate to-a higher dimensional vector. For k = (k1, k2, k3)", the
positional encoding consists of sine and cosine waves, and the
mapping is defined as

2i

”).
?)

1,2,3. (26)

p (k) = sin(k,-Dﬂ(

blw

ol

p(2i+ ],(k,) = COS(I(A,'DH(

S

D,
92!

~.
Il

i=1,...

It is empirically observed that using this encoding works well
for clean data. For noisy data, it is required to exclude 10% of
the high-frequency components. The.decoder outputs the vol-
ume at frequency k as Vz (k) = Go(z, p(k)).
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FIGURE 4. The CryoDRGN model architecture. The VAE is used to perform approximate inference for latent variable z denoting structural heterogeneity.
The decoder reconstructs an image frequency by frequency in k-space, given z and p (k), the positional encoding of 3D Cartesian k-space coordinates.
The 3D frequency coordinates corresponding to each input image Fourier coefficient are obtained by rotating a D x D lattice on the k. — k, plane by
R, the orientation of the particle. The latent orientation R for each image is inferred by a branch and bound global optimization procedure. (Source:

Figure courtesy of the authors of [37].)



Using the Fourier slice theorem in (23) and the decoder G,
we can evaluate the negative log-likelihood of the image y
given the latent variable z ~ ¢g4(z|y) and the pose param-
eters (R, t)

—logpe(y|z. R, t)

LS 15 ks k) = Calhss k) S, )
207 0%

X Go(z, p(R" [k, ky, 01")) [} + D*log(v27 5).  (27)

CryoDRGN jointly estimates the pose parameters and the
VAE network parameters by alternating between updating
those two sets of parameterﬁi’v hen the pose parameters (R,t)
are fixed, CryoDRGN minimizes the negative ELBO using
the Adam optimizer [48] with respect to ¢ and 6 following
the standard VAE framework

B
L(¢,0)= 2. Dir(q¢(z]3n.)| p(@))

m=1

_ Ez~q¢(z|j'nm) [logpe(j’"mIZv Rs t)] (28)

where B is the batch size, and {n.} _, is a set of random in-
dices for projection images chosen at each training iteration.

The physics-based measurement model is incorporated in the
negative log-likelihood in (27), which appears in the negative
ELBO (28) for training the VAE mod ith fixed VAE net-
work parameters ¢ and 6, a global search over SO(3) X R?
i1s performed for the maximum-likelihood estimation of
the pose (R,t) for each image given the decoded volume
Vz(k) =Go(z, p(k)). An efficient joint maximum-likelihood
estimator pose estimation and a VAE training scheme for cryo-
EM are detailed in [49].

After training, CryoDRGN provides per-particle image latent
encoding. The encoder network outputs z; = u¢ (i), which
corresponds to the approximate MAP estimate of the latent vari-
able z; given y, i.e., zi=argmax:q¢ (z|yi) = ¢ (yi). The
trained decoder network can then generate 3D volumes given
arbitrary values of the latent variable z via V.(k)=Ge (2, pk)).
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FIGURE 5. A structural heterogeneity analysis. With the trained CryoDRGN encoder, all particle images of the ribosome dataset [51] are encoded into the
latent space, as shown in the center panel. The trained decoder can map the latent variable to the 3D volumes, as indicated in the right panel. In addition,
the latent space representation can be used to filter particle images and remove impurities. (Source: Figure courtesy of the authors of [47].)



GAN-Dbased generative models

CryoGAN [4] and Multi-CryoGAN [18] address the 3D re-
construction problem in cryo-EM from the perspective of
distribution matching. These methods adopt the Wasserstein
GAN structure and use a physics-based cryo-EM data simu-
lator to generate the projection images. Unlike the maximum
likelihood-based approaches, the adversarial learning-based
approaches do not require the estimation of the individual pose
parameters. Instead, in CryoGAN [4] and Multi-CryoGAN
[18], the imaging parameters (rotations, in-plane translations,
and CTF parameters) @ =(R, t, d) are drawn from a known
prior distribution p.

CryoGAN is used to reconstruct a single 3D volume from/)\
the image data, assuming a single conformation.-Given-the
3D volume V¥, the distribution of the generated images is
denoted by peen(y; V). The reconstruction is achieved by
minimizing the 1-Wasserstein distance between pgen(y; V)
and pdaa (y) and becomes the following min-max optimiza-
tion problem:

Viee = arg‘rlnin ”Dﬂfix<I(Ey~,,m[D¢(y)] — By peaty:v[ Do (M)]).
: (29)

S’V\ﬁ‘b oonfo

The Lipschitz constraint | Dy llLip 1s enforced by penalizing
the norm of the gradient of Dy with respect to its input. Based
on empirical samples, the loss in (29) is reformulated as

B

L(V,¢)=> (Dg(yiz.)— Dg(yien) = Al(|VyDg(yim)|—1)])
m=|
(30)

where B is the batch size; {n.}>_, is a set of random in-

dices for projection images selected at each iteration;

rmesi/

y;;enbv\’ienotes the projections from the current estimate
V generated by the cryo-EM physics simulator accord-
ing to (21); and A € R, is a gradient penalty coefficient.
The interpolated sample used in the gradient penalty is
Yint = AmYdaa + (1= @m)yeen, where a, is sampled from a
uniform distribution on the interval [0,1]. Using the in-
terpolated samples ensures that the learned discriminator
function is 1-Lipschitz on the domain spanned by both the

generated and real data.



To address the multiconformation setting, Multi-Cryo-
GAN [18] (Figure 6)-adds-a-convolutional-NN-«(CNN) Gy to
the CryoGAN architecture to learn a mapping from a latent

space to-the 3D conformation distribution. It samples a latent T
vector z from a prior distribution. pz. Then, a CNN G, maps / Real Data \
the input latent variable z to the conformation manifold, i.e., / gy
Vz=Gy(z). Based on the generated volume V, the cryo-EM C°"f°f";:;i::e:"a"if°'d _’._’
physics-based simulator .generates noisy projection  images. Real
. . . . . . . D, —
The distribution of the generated projection images is " Ygen ~ Pgen | Generated?
. . ryo-
denoted by-pges(y:+Gy). To find the network parameters in the z-p.—| G [— & — Prysics. L, .
. « o e . Simulator
generator Gy, Multi-CryoGAN minimizes-the-1-Wasserstein G, (2) i ol
. . . oY
distance b.etweetn paam(y).an.d Rgen(y; Gy); which results in \_ . 8% -
the following min-max optimization problem. \ J

Yy = argmm Wl ( Pdatas P en) F]GIIIIE 6. The model ar'ch.ltecture for Multi-CryoGAN, which contains the architecture for (a) conformation manifold mapper (in a red box) and (b) CryoGAN
(in a blue box). (Source: Figure courtesy of the authors of [18].)

—drgmln"[nhixq(lE', ~pa D (¥)] — ) ~pealy:Gp) [Dg(P)]).
56 ip—=
(31)



* Score-based generative models for sparse-view CT and

accelerated MR

In sparse-view CT and accelerated MRI, we consider the gen-
eral linear measurement model

y=Ax+e=PN)Mx+e, €~ N(,I) (42)

where M corresponds to the Radon transform in sparse-view
CT and Fourier transform in accelerated (undersampled)
MRI, respectively, and A is an n x n diagonal matrix where
Ai € {0,1} with tr(A) =m, and PA)&{0,1}" " is-an
operator that keeps only the rows of A that A;; # 0. Matrix A
1s assumed to have full row rank.

In the “Score-Based Generative Models™ section, we discussed
the unconditional sampling of x(f) to generate data x(0)
from noise x(7') by following the reverse-time SDE. Given
the measurement data y, in principle, the reconstruction should
be achieved by generating approximate samples from the
conditional stochastic process {x(t)|y} from =T to t =0.
However, it is difficult to directly solve the conditional reverse-
time SDE {x(7)| y}:e0,r) without using paired training data
to learn the conditional score function. For simplicity, we set
T = 1 for the discussions later.



To overcome the difficulty in sampling directly from {x(¢)| y},
[1] introduced the following stochastic process {y(f)}re(o.1,
given the unconditional stochastic process {x (1)} 0.1

y(1) 2 Ax(f) + a(Ne = A(a()x(0) + B(1)z7) + a(De
= a(t)y + B(DAz (43)

where z € R" ~ N(0, I'). Equality (a) follows fromthe Gaussian
transition kernel po:(x(7)| x(0)) = N(x (1) | e (t)x(0), B (I

Therefore, it is tractable to gen-
erate samples y(7) ~ p:(y ()| y) according to (43). In addition,
we can modify the iterative sampling algorithm designed for
the unconditional stochastic process {x(7)}:«0,1] by encourag-
ing data consistency between the samples x () ~ p:(x(t)) and
the samples y () at each time 7 by constructing the intermedi-
ate samples

X ()= argmin{(1—2A)|v =% |} + A min | v —u |3},
veR" uc 2"

subject to Au = y (1) (44)

where A € [0, 1] is a parameter that balances between data con-
sistency with the unconditional generation x(7) and the con-
ditional generation y (7). The weighted norm |- |3, is defined
as | x |5 =] Mx 3.

When A = (0, we have
\.f"(t) = x (1), and we don’t incorporate the stochastic process of
x (1) associated with the observation y. This parameter can be
tuned on a validation dataset using Bayesian optimization. In
summary, the physics of the measurement process is incorpo-
rated into the conditional generation through two steps: 1) de-
fine the process {y ()} according to (43) and 2) encourage data
consistency according to (44). '

The sampling process selects a sequence of times 0 =t <
f1 <---<ty =1 and iterates according to

y(t) = a(t)y + B)Azi, zie R" ~ N, I) (45a)
X(t) =M AAP (N)y (1) + (1 — 2) AMx (1)

+ (I — AN)Mx (1))
a(t)¥' (1) | b(t)’se (X'(1:),1) L bz

N N /N

(45¢)

(45b)

x(ti-1) =x'(t) —

where ' (A) denotes the right inverse of #(A). The process
runs from ¢ =1 backward to t =0 and draws approximate
samples x'(0) from p(x|y) as the reconstructed images. This
is especially useful in quantifying the uncertainty of the recon-
structions by directly evaluating the mean and variance of the
reconstructed images for the same measurement y.
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FIGURE 9. An illustration of the iterative sampling method in [1] for
solving the inverse problems. The green arrows indicate the process of
generating samples y(z,) from the observation y according to (45a). The
orange arrows show the process of combining the unconditional genera-
tive samples x(z;) with y(z,) according to (45b). The blue arrows indicate
the reverse-time stochastic process in (45c).



Summary and future outlook

* cryo-EM
* more systematic quantitative comparisons to choices and hyperparameters
* provide physical or biological meaning to the distance between the latent

space of conformation variables
* still lack a standardized measure or gold-standard task to evaluate how well a

method Is able to capture the heterogeneit

* score-based approaches
* slow convergence



