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Introduction

Deep learning applications: pattern recognition, data mining, statistical learning, computer

vision, natural language processing

SSL has been a hot research topic: Labeled samples are often difficult, expensive, or time-
consuming to obtain, while the unlabeled data is usually abundant and can be easily or
inexpensively obtained.

SSL: A learning paradigm associated with constructing models that use both labeled and

unlabeled data, provide a way to explore the latent patterns from unlabeled examples.

SSL classification: classification, clustering, regression
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The taxonomy of major deep semi-supervised learning methods based on loss function and
model design

Background

SSL aims to solve the following optimization problem
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Different choices of the unsupervised loss functions and regularization terms lead to different
semisupervised models.
SSL can be classified into two settings. Transductive learning generalize over the unlabeled

samples, while inductive learning supposes that the learned semisupervised classifier will be still

applicable to new unseen data.



Assumptions for SSL

Self-training assumption. When the hypothesis is satisfied, those high-confidence

predictions are considered to be ground-truth.

Co-training assumption. instance = has two conditionally independent views, and each
view is sufficient for a classification task.

Generative model assumption. Generally, it is assumed that data are generated from a
mixture of distributions.

Cluster assumption. If two points 1 and x3 are in the same cluster,they should belong to
the same category.

Low-density separation. The decision boundary should be in a low-density region, not

through a high-density area.

Manifold assumption. If two points 1 and x5 are located in a local neighborhood in the
low-dimensional manifold, they have similar class labels. This assumption reflects the local
smoothness of the decision boundary.

Related Learning Paradigms

Transfer learning. Transfer learning aims to apply knowledge from one or more source
domains to a target domain in order to improve performance on the target task.

Weakly-supervised learning. Weakly-supervised learning relaxes the data dependence
that requires groundtruth labels to be given for a large amount of training data set in
strong supervision.

There are three types of weakly supervised data: Incomplete supervised data means only a
subset of training data is labeled. Inexact supervised data suggests that the labels of
training examples are coarse-grained. Inaccurate supervised data means that the given

labels are not always groundtruth.

Positive and unlabeled learning. PU learning is a variant of positive and negative binary

classification, where the training data consists of positive samples and unlabeled samples.

Meta-learning. Meta-learning also known as “learning to learn”, aims to learn new skills or
adapt to new tasks rapidly with previous knowledge and a few training examples.

Self-supervised learning. It can leverage input data as supervision and use the learned
feature representations for many downstream tasks.

Generative mothods

Generative methods can learn the implicit features of data to better model data distributions.

They model the real data distribution from the training dataset and then generate new data with



this distribution.
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Semi-supervised GANs

A typical GAN belongs to unsupervised learning, it consists of a generator G and a
discriminator D. The Generator generates fake samples of data and tries to fool the
Discriminator. The Discriminator, on the other hand, tries to distinguish between the real and
fake samples.As we can see, D and G play the following two-player minimax game with the value
function V (G, D):

]'[;J_%I‘l mg){ V(D, G) = Eazwpdm(:z:) [l()g D(:I:)] + Ezmpz(z) [lt)g(l - D(G(z)))]

Ddata(x) = distribution of real data, joint probability distribution of each pixel of the image
p(z) = distribution of generator

x = sample from pdqtq (), image

z = sample from p(z), noise

D(x) = Discriminator network

G(z) = Generator network

How to use GANs for SSL

(a) re-using the features from the discriminator

(b) using GAN-generated samples to regularize a classifier
(c) learning an inference model

(d) using samples produced by a GAN as additional training data

A simple SSL approach is to combine supervised and unsupervised loss during training.

CATEGORICAL GENERATIVE ADVERSARIAL NETWORKS——CatGAN

Discriminator perspective. The requirements to the discriminator are that it should
(i) be certain of class assignment for samples from X



(i) be uncertain of assignment for generated samples
(iii) use all classes equally

The most direct measure is the Shannon entropy H, which is defined as the expected value of
the information carried by a sample from a given distribution.
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Generator perspective. The requirements to the generator are that it should
(i) generate samples with highly certain class assignments

(i) equally distribute samples across all K classes
[EJ{U| D) ] [”Z;nyl iz ,_IJ}], with z' ~ P(z).

we can define the CatGAN objective for the discriminator and for the generator

+ Eyri | H [ply | G(2), D)),
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Now consider adapting the formulation to the semi-supervised setting.

Let XL = (21, 4Y), (2%, y*) be a set of L labeled examples, with label vectors * € RX in one-
hot encoding.These additional examples can be incorporated into the objectives by calculating a
cross-entropy term between the predicted conditional distribution p(y|z, D) and the true label
distribution of examples from X L.

CEly.ply|x,D)] = Zyxlugpy—yxlxl)
=1

The semi-supervised CatGAN problem is then given through the following two objectives

Lh = max Hy [p(y | D)] — Ex~x [H ply | x, D)}] + Bz piz) [H [p(y | G(z), D)]]

+AE(x,y)~xL {CE[}’ ply | x, )]]’
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Semi-supervised VAE

AutoEncoder

The purpose of the autoencoder is to perform unsupervised feature learning, using unlabeled

data to find an efficient low-dimensional feature extractor.
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1.3

Variational AutoEncoders(VAEs)are flexible models which combine deep autoencoders with

generative latent-variable models. The generative model captures representations of the

distributions rather than the observations of the dataset.

Variational Auto-encoder

(VAE)
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c; = exp(o;) X e; + m;

3
D (exp(a) = (1 + 0) + (m)?)
i=1

The greater the probability that the original image in the training set appears in the output

image set, the more similar the output image is to the original image.

Only the decoder is considered:
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Considering the encoder:

while P(zx)
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The training process of VAE
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STEP1: Adjust the encoder(g(z|z)) to increase L.

The second term in the Ly decomposition formula is not easy to quantify training, so it is
adjusted by reducing K L(q(z|z)||P(2)), that is, making P(z) close to g(z|z).Generally, P(z) is
a standard normal distribution.

STEP2: Adjust the decoder(P(z|z)) to increase Ly,
The first term in the Ly decomposition formula has nothing to do with P(z|z), so we can
maximize the second term using Monte Carlo.

max loss = —loss; + loss, = —KL(q(z|z)||P(z)) + [ q(z|z)log P(z|z)dz
= S (eap(0) — (1+ @) + (m)?) = L YoF Tog P(s19]0)

Semi-supervised learning with deep generative models——SSVAE
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Inference model Q

(1) Latent feature discriminative model (2) Generative semi-supervised model  (3) Stacked generative semi-supervised model
(M1) (M2) (M1 +M2)

(1)A clustering of related observations in a latent feature space that allows for accurate
classification, even with a limited number of labels. Approximate samples from the posterior
distribution over the latent variables p(z|x) are used as features to train a classifier that predicts
class labels y.

(2)The class labels y are treated as latent variables if no class label is available and z are
additional latent variables.Since most labels y are unobserved, we integrate over the class of any
unlabelled data during the inference process, thus performing classification as inference.The

inferred posterior distribution ps(y|z) can predict any missing labels.



(3)Using the generative model M1 to learn the new latent representation z1, and uses the
embedding from 2 instead of the raw data x to learn a generative semi-supervised model M2.

Consistency regularization

The main idea of Consistency Regularization is that for an input, even with small disturbances, its
predictions should be consistent.In these methods, a consistency regularization term is applied
to the final loss function to specify the prior constraints assumed by researchers.
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During training, we evaluate the network for each training input ; twice, resulting in prediction

vectors z; and Zz;.

Our loss function consists of two components. The first component is the standard cross-
entropy loss, evaluated for labeled inputs only. The second component, evaluated for all inputs,
penalizes different predictions for the same training input z; by taking the mean square
difference between the prediction vectors z; and Z;.

Time-dependent weighting function w(t) used to control the weight of consistency loss. Since
the network parameters are random at the beginning of training, the loss of the unsupervised
part will be particularly large, and a large w(t) will affect the normal training of the network.

Therefore, w(t) increases slowly over time.

Algorithm 1 II-model pseudocode.

Require: x; = training stimuli
Require: L = set of training input indices with known labels
Require: y; = labels for labeled inputs ¢ € L
Require: w(t) = unsupervised weight ramp-up function
Require: fy(x) = stochastic neural network with trainable parameters ¢
Require: g(x) = stochastic input augmentation function

for ¢ in [1, num_epochs| do

for each minibatch B do

zier « fo(g(xicn)) > evaluate network outputs for augmented inputs
Ziep « folg(zicn)) > again, with different dropout and augmentation
loss « — |—,,13‘ Zie(BﬂL} log z; [y;] > supervised loss component
+ w[t)ﬁ e llzi — &l & unsupervised loss component
update ¢ using, e.g., ADAM > update network parameters
end for
end for

return ¢




Temporal Ensembling

Temporal ensembling
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An obvious problem with the t-model is that each input requires two forward propagations to
calculate the consistency loss, which may be inefficient.Temporal ensembling alleviates this by
aggregating the predictions of multiple previous network evaluations into an ensemble
prediction. It also lets us evaluate the network only once during training, gaining an
approximate 2x speedup over the -model.

The main difference to the M-model is that the network and augmentations are evaluated only
once per input per epoch, and the target vectors z for the unsupervised loss component are
based on prior network evaluations instead of a second evaluation of the network.

Algorithm 2 Temporal ensembling pseudocode. Note that the updates of Z and Z could equally
well be done inside the minibatch loop; in this pseudocode they occur between epochs for clarity.

Require: x; = training stimuli
Require: L = set of training input indices with known labels
Require: y; = labels for labeled inputs i € L
Require: o =ensembling momentum, 0 < o < 1
Require: w(t) = unsupervised weight ramp-up function
Require: fy(x) = stochastic neural network with trainable parameters ¢/
Require: g(x) = stochastic input augmentation function
Z 4 Onxe > initialize ensemble predictions
Z + Onvxqn > initialize target vectors
for t in [1, num_epochs| do
for each minibatch B do

zien < folg(zien,t)) > evaluate network outputs for augmented inputs
loss + — ﬁ >ie(Bnr) 10g zilyi] > supervised loss component
- w{t)ﬁ Yicr |z — Z]? > unsupervised loss component
update # using, e.g., ADAM > update network parameters
end for
Z—aZ+(1-a)z > accumulate ensemble predictions
2« Z/(1-a" > construct target vectors by bias correction
end for
return ¢

Graph-based methods

The basic assumption in GSSL is that a graph can be extracted from the raw dataset where each

node represents a training sample, and each edge denotes some similarity measurement of the
node pair.



Structural deep network embedding (SDNE)
Defination 1 (Graph) A graph is denoted as G = (V,E), where V = {v1,v9, ..., v,} represents n

vertexes and £ = {e,',j}?jzl represents the edges. Each edge e; ; is associated with a weight s; ;
>0. For v; and v; not linked by an edge, s; ; = 0. Otherwise, for unweighted graph s; ; = 1 and
for weighted graph s; ; > 0

Defination 2 (First-Order Proximity) The first-order proximity describes the pairwise proximity
between vertexes. For any pair of vertexes, if s; j > 0, there exists positive first-order proximity
between v; and v;. Otherwise, the first-order proximity between v; and v is 0.

Defination 3 (Second-Order Proximity) The second-order proximity between a pair of vertexes
describes the proximity of the pair's neighborhood structure. Let Ny, = {sy.1,- - -, su,|V‘}
denote the first-order proximity between v, and other vertexes. Then, second-order proximity is
determined by the similarity of N, and N,

Defination 4 (Network Embedding) Given a graph denoted as G = (V,E), network embedding aims
to learn a mapping function f : v; — y; € R% where d << |V|. The objective of the function is
to make the similarity between y; and y; explicitly preserve the first-order and second-order

proximity of v; and v;.
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Given a network G = (V, E) we can obtain its adjacency matrix S, which contains n instances



S1,...,8p. For each instance s; = {Si,j}?:p s;,5 > 0 if and only if there exists a link between v;

and vj;. Therefore, s; describes the neighborhood structure of the vertex v; and S provides the
information of the neighborhood structure of each vertex.

Considering our case that if we use the adjacency matrix S as the input to the autoencoder, i.e.
x; = 8;, since each instance s; characterizes the neighborhood structure of the vertex v;, the
reconstruction process will make the vertexes which have similar neighborhood structures have

similar latent representations.

In the networks, we can observe some links but simultaneously many legitimate links are not
observed, which means that the links between vertexes do indicate their similarity but no links
do not necessarily indicate their dissimilarity. Moreover, due to the sparsity of networks, the
number of non-zero elements in S is far less than that of zero elements. Then if we directly use S

as the input to the traditional autoencoder, it is more prone to reconstruct the zero elements in
S.

Lona =Y _ |I(%, —xi) @ by[3
i=l
= |(X - X) o B||%

bi = {bij}j_1- f sij = 0,bij =1, else bj,j = B> 1. Now by using the revised deep
autoencoder with the adjacency matrix S as input, the vertexes which have similar neighborhood
structure will be mapped near in the representations space, guaranteed by the reconstruction
criterion. In other words, the unsupervised component of our model can preserve the global
network structure by reconstructing the second-order proximity between vertexes.

It is not only necessary to preserve the global network structure, but also essential to capture
the local structure. We use the first- order proximity to denote the local network structure. The
first-order proximity can be regarded as the supervised information to constrain the similarity of
the latent representations of a pair of vertexes.
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The objective function borrows the idea of Laplacian Eigenmaps, which incurs a penalty when
similar vertexes are mapped far away in the embedding space.
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where Lyeg is an L2-norm regularizer term to prevent overfitting, which is defined as follows:
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Pseudo-labeling methods

The pseudo-labeling methods differ from the consistency regularization methods in that the
consistency regularization methods usually rely on consistency constraint of rich data
transformations. In contrast, pseudo-labeling methods rely on the high confidence of pseudo-
labels, which can be added to the training data set as labeled data. There are two main patterns,
one is to improve the performance of the whole framework based on the disagreement of views
or multiple networks, and the other is self-training, in particular, the success of self-supervised

learning in unsupervised domain makes some self-training self-supervised methods realized.

Pseudo-label

In this article we propose the simpler way of training neural network in a semi-supervised
fashion. Basically, the proposed network is trained in a supervised fashion with labeled and
unlabeled data simultaneously.For unlabeled data, Pseudo-Labels, just picking up the class
which has the maximum predicted probability every weights update, are used as if they were
true labels.

Step1: Given labeled data and unlabeled data
Step2: Train the model with labeled data
Step3: Use the trained model to predict unlabeled data and get pseudo-label

Step4: Take part of the data from the unlabeled data and add it to the labeled data set. Repeat
Step2

n C n' C
L= 3 S L M +al0 S0 S L £m)
m=1 i=1 m=1 i=1

unlabeled data pseudo—labels

31—

o —
labeled data

Hybrid methods




Hybrid methods combine ideas from the above-mentioned methods such as pseudo-label,
consistency regularization and entropy minimization for performance improvement.

MixMatch

Given a batch X of labeled examples with one-hot targets (representing one of L possible labels)
and an equally-sized batch U of unlabeled examples, MixMatch produces a processed batch
of augmented labeled examples X' and a batch of augmented unlabeled examples with
“guessed” labels U'U" and X" are then used in computing separate labeled and unlabeled loss

terms.

Data Augmentation

As is typical in many SSL methods, we use data augmentation both on labeled and unlabeled
data. For each zxp in the batch of labeled data X, we generate a transformed version Tp =
Augment(zyp). For each uy, in the batch of unlabeled data U, we generate K augmentations Zﬁb,k =
Augment(zp), k € (1, ..., K). We use these individual augmentations to generate a “guessed
label” gp for each up.

Label Guessing

For each unlabeled example in U, MixMatch produces a “guess” for the example’s label using the
model’s predictions. This guess is later used in the unsupervised loss term. To do so, we
compute the average of the model’s predicted class distributions across all the K augmentations

of up by
_ 1 .
gy = = Z pmml{:l(y | U, 3 9)

Sharpening

Given the average prediction over augmentations gy, we apply a sharpening function to reduce
the entropy of the label distribution.

1
Sharpen(p, T); T/Zp

Clasmfy M \
t """" * .. Kaugmentations ... 1 l;E [E -
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MixUp



We mix both labeled examples and unlabeled examples with label guesses.For a pair of two
examples with their corresponding labels probabilities (z1, p1), (z2, p2) we compute (z’,p’) by

A ~ Beta(a, a)

A= max(\, 1 - A)
=Ny + (1= XN)axg
pr=Np1+(1=X)p

To apply MixUp, we first collect all augmented labeled examples with their labels and all

unlabeled examples with their guessed labels into

‘:'E, - ((‘f‘bvpb}be (J“.':'B))
U= (g q)ib € (1,....B) k€ (1,...,K))

Then, we combine these collections and shuffle the result to form W which will serve as a data
source for MixUp.

W = Shllﬂ:le(co‘f'jl':ﬂt((i’., Z:{):] /| Combine and shuffle labeled and unlabeled data
X = [:I\a]jxl_}p[:;tﬂ'fj Wiie (1,..., |(’CA'|)} [/ Apply MixUp to labeled data and entries from W
U = (:\*[ixUp(Z}i, Wi %) e (1,..., |Z:i\"|)) // Apply MixUp to unlabeled data and the rest of VW

T

Loss Function

X' U" = MixMatch(X, U, T, K, «)

1
ﬁ,.]j - |(,t,_,| Z H(jl metlEl(y | .L'..ﬁ'))
T, peX’
1
J::u — ; Z ||t;-‘ - pmr.:del(y | L [‘)‘) %
L|H | u,gelid’
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Algorithm 1 MixMatch takes a batch of labeled data A" and a batch of unlabeled data f and produces
a collection X'’ (resp. U") of processed labeled examples (resp. unlabeled with guessed labels).

I: Input: Batch of labeled examples and their one-hot labels X' = ((zs,ps):b € (1....,B)). batch of

unlabeled examples I/ = (‘LM;; be(l,...,B )) sharpening temperature 7", number of augmentations K,
Beta distribution parameter o for MixUp.

2: forb=1to Bdo

3: Zp = Augment(x,) [/ Apply data augmentation to

4:  fork=1to K do

3: iy ). = Augment(uy) // Apply k" round of data augmentation to us

6:  end for

7: qy = ;1—( Zk_ pmodel(y | tto,1;8) /) Compute average predictions across all augmentations of uy,
8: g, = Sharpen(gy,T) [/ Apply temperature sharpening to the average prediction (see eq. i

9: end for

10 X = ((.‘iﬁb, mibe (1,..., B)) /| Augmented labeled examples and their labels

1: U = ((@wk,qv);b€ (1,....,B), k€ (1,...,K)) [/ Augmented unlabeled examples, guessed labels

12: W = Shllﬂie(Concat(Aﬂ’,lj)] [/ Combine and shuffle labeled and unlabeled data

13: X' = (I\*IiXUp[:i’f, Wikie (1,..., PE' }) [/ Apply MixUp to labeled data and entries from W

14: U' = (MixUp(Z}f, Wi % Yt e (1,..., |E':f'|)) // Apply MixUp ro unlabeled data and the rest of W
15: return X7, U’




