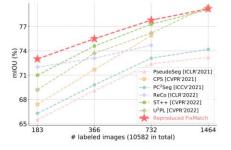
Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation [CVPR 2023]

We surprisingly notice that, so long as coupled with appropriate strong perturbations, FixMatch can indeed still exhibit powerful generalization capability in our scenario.



Method	# labeled images (10582 in total)				
	92	183	366	732	1464
w/o any SP	39.5	52.7	65.5	69.2	74.6
w/ CutMix w/ whole SP	<u>56.7</u> 63.9	<u>67.9</u> 73.0	<u>71.9</u> 75.5	<u>75.1</u> 77.8	<u>78.3</u> 79.2

Table 1. The importance of image-level strong perturbations (SP) to FixMatch on the Pascal dataset. w/o any SP: directly utilize hard label of x^w to supervise its logits. w/ CutMix: only use CutMix [71] Figure 1. Comparison between state-of-the-art methods and our as a perturbation. w/ whole SP: strong perturbations contain color transformations from ST++ [68], together with CutMix.

reproduced FixMatch [55] on the Pascal dataset.

(1) Expanding a broader perturbation space:

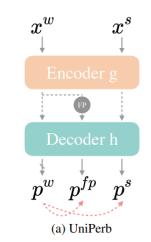
design a unified perturbation framework for both raw images and extracted features

(2) Sufficiently harvesting original perturbations:

dual independent strong views are randomly sampled from the perturbation pool

Unified Perturbations for Images and Features

In order to construct a broader perturbation space, built on top of FixMatch, we propose to inject perturbations on features of the weakly perturbed image.

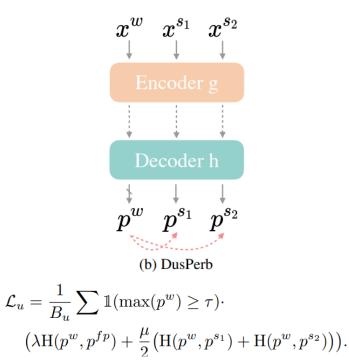


 $\mathcal{L}_u = \frac{1}{B_u} \sum \mathbb{1}(\max(p^w) \ge \tau) \big(\mathrm{H}(p^w, p^s) + \mathrm{H}(p^w, p^{fp}) \big).$

Do not aim at proposing a novel feature perturbation approach in this work. Actually, an embarrassingly simple channel dropout (nn.Dropout2d in PyTorch) is well-performed enough.

Dual-Stream Perturbations

Rather than feeding a single p^s into the model, we independently yield dual-stream perturbations (x^{s1}, x^{s2}) from x^w by strong perturbation pool A^s



Regularizing two strong views with a shared weak view can be regarded as enforcing consistency between these two strong views.

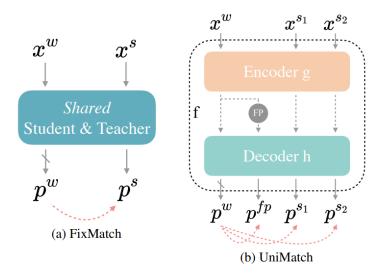


Figure 2. (a) The FixMatch baseline. (b) Our proposed unified dual-stream perturbations method (UniMatch). The FP denotes feature perturbation, and the dashed curves represent supervision.